In this study,the dynamic response of an elastically connected multi-beam structure subjected to a moving load with elastic boundary conditions is investigated.The boundary conditions and properties of each beam vary,...In this study,the dynamic response of an elastically connected multi-beam structure subjected to a moving load with elastic boundary conditions is investigated.The boundary conditions and properties of each beam vary,and the difficulty of solving the motion equation is reduced by using a Fourier series plus three special transformations.By examining a high-speed railway(HSR)with mixed boundary conditions,the rationality for the newly proposed method is verified,the difference in simulated multiple-beam models with different beam numbers is explored,and the influence of material parameters and load speed on the dynamic response of multiple-beam structures is examined.Results suggest that the number of beams in the model should be as close to the actual beam number as possible.Models with an appropriate beam number can be used to describe in detail the dynamic response of the structure.Neglecting the track-structure can overestimate the resonant speed of a high-speed railway,simply-supported beam bridge.The effective interval of foundation stiffness(EIFS)can provide a reference for future engineering designs.展开更多
The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determ...The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determine the dispersion curve of the fiber sample. A common problem in any interferogram analysis is the accuracy in locating fringe centers (fringe skeleton). There are a lot of computer-aided algorithms, which depend on the interferogram types, used to fringe skeleton extraction of various digital interferogram. In this paper, as far as I know, a novel algorithm for fringe skeleton extraction of double bright fringe of multiple-beam Fizeau fringe is presented. The proposed algorithm based on using the different order of Fourier transform and the derivative-sign binary image. Also the proposed algorithm has been successfully tested by using a computer simulation fringe and an experimental pattern. The results are compared with the original interferogram and shown a good agreement.展开更多
We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG∕Cr^(4+):YAG composite medium monolithic laser with four-beam output. The energy of a laser pu...We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG∕Cr^(4+):YAG composite medium monolithic laser with four-beam output. The energy of a laser pulse was higher than 3 m J with duration of 0.9 ns. The proposed system has the ability to choose independently the focus of each beam. Such a laser device can be used for multipoint ignition of an automobile gasoline engine, but could also be of interest for ignition in space propulsion or in turbulent conditions specific to aeronautics.展开更多
The quest for solar-blind photodetectors with outstanding optoelectronic properties and weak signals detection capability is essential for their applications in the field of imaging,communication,warning,etc.To date,G...The quest for solar-blind photodetectors with outstanding optoelectronic properties and weak signals detection capability is essential for their applications in the field of imaging,communication,warning,etc.To date,Ga_(2)O_(3)has demonstrated potential for high-performance solar-blind photodetectors.However,the performance usually decays superlinearly at low light intensities due to carrier-trapping effect,which limits the weak signal detection capability of Ga_(2)O_(3)photodetectors.Herein,a Ga_(2)O_(3)solarblind photodetector with ultra-thin absorbing medium has been designed to restrain trapping of photo-generated carriers during the transporting process by shortening the carrier transport distance.Meanwhile,multiple-beam interference is employed to enhance the absorption efficiency of the Ga_(2)O_(3)layer using an Al/Al_(2)O_(3)/Ga_(2)O_(3)structure.Based on the ultra-thin absorbing medium with enhanced absorption efficiency,a 7×7 flexible photodetector array is developed,and the detectivity can reach 1.7×10^(15)Jones,which is among the best values ever reported for Ga_(2)O_(3)photodetectors.Notably,the performance of the photodetector decays little as the illumination intensity is as weak as 5 nW/cm2,revealing the capacity to detect ultra-weak signals.In addition,the flexible photodetector array can execute the functions of imaging,spatial distribution of light source intensity,real-time light trajectory detection,etc.Our results may provide a route to high-performance solar-blind photodetectors for ultra-weak light detection.展开更多
基金Supported by:National Natural Science Foundations of China under Grant Nos.U1934207 and 51778630the Hunan Innovative Provincial Construction Project under Grant No.2019RS3009+1 种基金the Innovation-driven Plan in Central South University under Grant No.2020zzts159the Fundamental Research Funds for the Central Universities of Central South University under Grant No.2018zzts189。
文摘In this study,the dynamic response of an elastically connected multi-beam structure subjected to a moving load with elastic boundary conditions is investigated.The boundary conditions and properties of each beam vary,and the difficulty of solving the motion equation is reduced by using a Fourier series plus three special transformations.By examining a high-speed railway(HSR)with mixed boundary conditions,the rationality for the newly proposed method is verified,the difference in simulated multiple-beam models with different beam numbers is explored,and the influence of material parameters and load speed on the dynamic response of multiple-beam structures is examined.Results suggest that the number of beams in the model should be as close to the actual beam number as possible.Models with an appropriate beam number can be used to describe in detail the dynamic response of the structure.Neglecting the track-structure can overestimate the resonant speed of a high-speed railway,simply-supported beam bridge.The effective interval of foundation stiffness(EIFS)can provide a reference for future engineering designs.
文摘The interferogram of multiple-beam Fizeau fringe technique plays an important role to investigate the optical properties of fiber because this interferogram provides us with useful information which can used to determine the dispersion curve of the fiber sample. A common problem in any interferogram analysis is the accuracy in locating fringe centers (fringe skeleton). There are a lot of computer-aided algorithms, which depend on the interferogram types, used to fringe skeleton extraction of various digital interferogram. In this paper, as far as I know, a novel algorithm for fringe skeleton extraction of double bright fringe of multiple-beam Fizeau fringe is presented. The proposed algorithm based on using the different order of Fourier transform and the derivative-sign binary image. Also the proposed algorithm has been successfully tested by using a computer simulation fringe and an experimental pattern. The results are compared with the original interferogram and shown a good agreement.
基金Autoritatea Nationala pentru Cercetare Stiintifica(ANCS)(PN-II-PT-PCCA-2011-3.2-1040(58/2012),NUCLEU4N/2016)Horizon 2020(691688 LASIG-TWIN)
文摘We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG∕Cr^(4+):YAG composite medium monolithic laser with four-beam output. The energy of a laser pulse was higher than 3 m J with duration of 0.9 ns. The proposed system has the ability to choose independently the focus of each beam. Such a laser device can be used for multipoint ignition of an automobile gasoline engine, but could also be of interest for ignition in space propulsion or in turbulent conditions specific to aeronautics.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFB0406500)the National Natural Science Foundation of China(Nos.61804136,U1804155,and 62027816)China Postdoctoral Science Foundation(Nos.2018M630829 and 2019T120630).
文摘The quest for solar-blind photodetectors with outstanding optoelectronic properties and weak signals detection capability is essential for their applications in the field of imaging,communication,warning,etc.To date,Ga_(2)O_(3)has demonstrated potential for high-performance solar-blind photodetectors.However,the performance usually decays superlinearly at low light intensities due to carrier-trapping effect,which limits the weak signal detection capability of Ga_(2)O_(3)photodetectors.Herein,a Ga_(2)O_(3)solarblind photodetector with ultra-thin absorbing medium has been designed to restrain trapping of photo-generated carriers during the transporting process by shortening the carrier transport distance.Meanwhile,multiple-beam interference is employed to enhance the absorption efficiency of the Ga_(2)O_(3)layer using an Al/Al_(2)O_(3)/Ga_(2)O_(3)structure.Based on the ultra-thin absorbing medium with enhanced absorption efficiency,a 7×7 flexible photodetector array is developed,and the detectivity can reach 1.7×10^(15)Jones,which is among the best values ever reported for Ga_(2)O_(3)photodetectors.Notably,the performance of the photodetector decays little as the illumination intensity is as weak as 5 nW/cm2,revealing the capacity to detect ultra-weak signals.In addition,the flexible photodetector array can execute the functions of imaging,spatial distribution of light source intensity,real-time light trajectory detection,etc.Our results may provide a route to high-performance solar-blind photodetectors for ultra-weak light detection.