Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse...Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.展开更多
<div style="text-align:justify;"> We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on...<div style="text-align:justify;"> We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on-Insulator (SOI) platform. The mode converter and demultiplexer have a compact size of less than 2.7 μm × 43.7 μm. Moreover, the crosstalk between neighboring wavelength channel within C band (1530 nm to 1570 nm) can be reduced by utilizing the tapered phase shifter cascaded with MMI. The simulated results indicate that this structure has a low insertion loss of less than 1 dB, a low crosstalk of better than ?15 dB and a relatively high fabrication tolerance of ~10 nm. Such structure may find many potential applications in silicon photonic integrated devices. </div>展开更多
Nowadays, because of its wide bandwidth and high communication capability, the optical fiber is more and more used for high data rate transmission of information in railway environments. Conventionally, only one servi...Nowadays, because of its wide bandwidth and high communication capability, the optical fiber is more and more used for high data rate transmission of information in railway environments. Conventionally, only one service is sent over the fiber at a time. However, many different services can be simultaneously conveyed in railway stations such as passenger information service, cellular phone, Wi-Fi... The objective of the work proposed in this paper is to demonstrate the potential benefits of transmitting radio signals over fiber in a railway environment. The main idea is to exploit the full capacity of the fiber by transmitting multiple services using the same fiber. Since, different services are operating in different frequency bands; we propose a new multiplexing technique called Mode Group Diversity Multiplexing (MGDM) to ensure the transmission of multiple services using the same fiber, without additional infrastructure. There are numerous advantages of the proposed technique, e.g., faster and reliable data exchange, high resolution video surveillance capability, high data rate information exchange in railway stations. We present, in this paper, the physical characteristics of optical fibers, performance of MGDM multiplexing technique, and the influence of the laser excitation conditions at the entrance of the fiber on the performances of the system.展开更多
On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be ...On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be provided using the previous diffraction-based analysis method.Moreover,the loss caused by the open boundaries poses challenges to applications.A multimode DONN architecture based on a more precise eigenmode analysis method is proposed.We have constructed a universal library of input,output,and metaline structures utilizing this method,and realized a multimode DONN composed of the structures from the library.On the designed multimode DONNs with only one layer of the metaline,the classification task of an Iris plants dataset is verified with an accuracy of 90%on the blind test dataset,and the performance of the one-bit binary adder task is also validated.Compared to the previous architectures,the multimode DONN exhibits a more compact design and higher energy efficiency.展开更多
Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division mul...Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.展开更多
A laser sensing system based on beat frequency demodulation is proposed. The sensor uses a single-longitudinal-mode distributed Bragg reflector (DBR) fiber laser as a sensing element. This laser sensor has great mul...A laser sensing system based on beat frequency demodulation is proposed. The sensor uses a single-longitudinal-mode distributed Bragg reflector (DBR) fiber laser as a sensing element. This laser sensor has great multiplexing capability due to its wide free spectral range. Wavelength-division-multiplex (WDM) and frequency-division-multiplex (FDM) techniques are studied. The sensing system has high sensitivity and multiplexing channels.展开更多
We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division mul...We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.展开更多
This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch disti...This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fber(MMF).This facilitated the information transmission by increasing light scattering processes,thereby encoding the optical spectra more comprehensively into speckle patterns.Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished.Compared to methods employing single-mode excitation and two-mode excitation,the three-mode excitation method reduced the recovered error by 88%and 50%respectively.A resolution enhancement approach based on alternating mode modulation was proposed,reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function.The proof-of-concept study can be further extended to encompass diverse programmable mode excitations.It is not only succinct and highly efcient but also well-suited for a variety of high-accuracy,high-resolution spectral measurement scenarios.展开更多
We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built ...We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built three-mode(LP01,LP11a,and LP11b)multiplexed experimental system,we thoughtfully investigate the TL-MIMO performances on the three-typed data,collecting from different sampling times,launching optical powers,and inputting optical signal-to-noise ratios(OSNRs).A dramatic reduction of approximately 40%–83.33%in the required training complexity is achieved in all three scenarios.Furthermore,the good stability of TL-MIMO in both the launched powers and OSNR test bands has also been proved.展开更多
基金supported in part by the ZTE Industry-University-Institute Cooperation Funds.
文摘Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system.
文摘<div style="text-align:justify;"> We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on-Insulator (SOI) platform. The mode converter and demultiplexer have a compact size of less than 2.7 μm × 43.7 μm. Moreover, the crosstalk between neighboring wavelength channel within C band (1530 nm to 1570 nm) can be reduced by utilizing the tapered phase shifter cascaded with MMI. The simulated results indicate that this structure has a low insertion loss of less than 1 dB, a low crosstalk of better than ?15 dB and a relatively high fabrication tolerance of ~10 nm. Such structure may find many potential applications in silicon photonic integrated devices. </div>
文摘Nowadays, because of its wide bandwidth and high communication capability, the optical fiber is more and more used for high data rate transmission of information in railway environments. Conventionally, only one service is sent over the fiber at a time. However, many different services can be simultaneously conveyed in railway stations such as passenger information service, cellular phone, Wi-Fi... The objective of the work proposed in this paper is to demonstrate the potential benefits of transmitting radio signals over fiber in a railway environment. The main idea is to exploit the full capacity of the fiber by transmitting multiple services using the same fiber. Since, different services are operating in different frequency bands; we propose a new multiplexing technique called Mode Group Diversity Multiplexing (MGDM) to ensure the transmission of multiple services using the same fiber, without additional infrastructure. There are numerous advantages of the proposed technique, e.g., faster and reliable data exchange, high resolution video surveillance capability, high data rate information exchange in railway stations. We present, in this paper, the physical characteristics of optical fibers, performance of MGDM multiplexing technique, and the influence of the laser excitation conditions at the entrance of the fiber on the performances of the system.
基金supported by the National Natural Science Foundation of China (Grant No.62135009)the Beijing Municipal Science and Technology Commission,Administrative Commission of Zhongguancun Science Park (Grant No.Z221100005322010).
文摘On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be provided using the previous diffraction-based analysis method.Moreover,the loss caused by the open boundaries poses challenges to applications.A multimode DONN architecture based on a more precise eigenmode analysis method is proposed.We have constructed a universal library of input,output,and metaline structures utilizing this method,and realized a multimode DONN composed of the structures from the library.On the designed multimode DONNs with only one layer of the metaline,the classification task of an Iris plants dataset is verified with an accuracy of 90%on the blind test dataset,and the performance of the one-bit binary adder task is also validated.Compared to the previous architectures,the multimode DONN exhibits a more compact design and higher energy efficiency.
基金financially supported by the Russian Foundation for Basic Research(grant No.18-29-20045)for WDM,MDM and hybrid WDM-MDM,WDM-PDM sectionsthe Russian Science Foundation(grant No.21-79-20075)for PDM,OAMM and hybrid PDM-MDM sectionsthe Ministry of Science and Higher Education of the Russian Federation under the FSRC"Crystallography and Photonics"of the Russian Academy of Sciences(the state task No.007-GZ/Ch3363/26)for comparative analysis.
文摘Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.
基金supported by the National 863 Program under Grant No. 2006AA01Z217the National Natural Science Foundation of China under Grant No. 60736039College Science Research Foundation of Tianjin and the Key Laboratory of Optoelectronic Information Technical Science, Ministry of Education of China under Grant No. 2006BA28
文摘A laser sensing system based on beat frequency demodulation is proposed. The sensor uses a single-longitudinal-mode distributed Bragg reflector (DBR) fiber laser as a sensing element. This laser sensor has great multiplexing capability due to its wide free spectral range. Wavelength-division-multiplex (WDM) and frequency-division-multiplex (FDM) techniques are studied. The sensing system has high sensitivity and multiplexing channels.
基金supported by the National Key R&D Program of China(No.2018YFB1800905)the National Natural Science Foundation of China(Nos.61935005,61720106015,61835002,and 62127802)。
文摘We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62305391)Hunan Innovative Province Construction Project(No.2019RS3017)Scientifc Fund of National University of Defense Technology(No.22-061).
文摘This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fber(MMF).This facilitated the information transmission by increasing light scattering processes,thereby encoding the optical spectra more comprehensively into speckle patterns.Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished.Compared to methods employing single-mode excitation and two-mode excitation,the three-mode excitation method reduced the recovered error by 88%and 50%respectively.A resolution enhancement approach based on alternating mode modulation was proposed,reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function.The proof-of-concept study can be further extended to encompass diverse programmable mode excitations.It is not only succinct and highly efcient but also well-suited for a variety of high-accuracy,high-resolution spectral measurement scenarios.
基金supported by the National Key R&D Program of China(No.2018YFB1801001)the Royal Society International Exchange Grant(No.IEC\NSFC\211244).
文摘We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built three-mode(LP01,LP11a,and LP11b)multiplexed experimental system,we thoughtfully investigate the TL-MIMO performances on the three-typed data,collecting from different sampling times,launching optical powers,and inputting optical signal-to-noise ratios(OSNRs).A dramatic reduction of approximately 40%–83.33%in the required training complexity is achieved in all three scenarios.Furthermore,the good stability of TL-MIMO in both the launched powers and OSNR test bands has also been proved.