In this paper we design an approximation method for solving stochastic programs with com-plete recourse and nonlinear deterministic constraints. This method is obtained by combiningapproximation method and Lagrange mu...In this paper we design an approximation method for solving stochastic programs with com-plete recourse and nonlinear deterministic constraints. This method is obtained by combiningapproximation method and Lagrange multiplier algorithm of Bertsekas type. Thus this methodhas the advantages of both the two.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel...This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.展开更多
Aiming at the problem that a large number of array elements are needed for uniform arrays to meet the requirements of direction map,a sparse array pattern synthesis method is proposed in this paper based on the sparse...Aiming at the problem that a large number of array elements are needed for uniform arrays to meet the requirements of direction map,a sparse array pattern synthesis method is proposed in this paper based on the sparse sensing theory.First,the Orthogonal Matching Pursuit(OMP)algorithm and the Exact Augmented Lagrange Multiplier(EALM)algorithm were improved in the sparse sensing theory to obtain a more efficient Orthogonal Multi⁃Matching Pursuit(OMMP)algorithm and the Semi⁃Exact Augmented Lagrange Multiplier(SEALM)algorithm.Then,the two improved algorithms were applied to linear array and planar array pattern syntheses respectively.Results showed that the improved algorithms could achieve the required pattern with very few elements.Numerical simulations verified the effectiveness and superiority of the two synthetic methods.In addition,compared with the existing sparse array synthesis method,the proposed method was more robust and accurate,and could maintain the advantage of easy implementation.展开更多
The purpose of this paper is threefold.(i) To explain the effective Kohn algorithm for multipliers in the complex Neumann problem and its difference with the full-real-radical Kohn algorithm, especially in the context...The purpose of this paper is threefold.(i) To explain the effective Kohn algorithm for multipliers in the complex Neumann problem and its difference with the full-real-radical Kohn algorithm, especially in the context of an example of Catlin-D'Angelo concerning the ineffectiveness of the latter.(ii) To extend the techniques of multiplier ideal sheaves for the complex Neumann problem to general systems of partial differential equations.(iii) To present a new procedure of generation of multipliers in the complex Neumann problem as a special case of the multiplier ideal sheaves techniques for general systems of partial differential equations.展开更多
In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,...In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,it is practical to perform state estimation in a decentralized manner.However,the possible communication packet loss is seldomly considered among various energy systems.This paper bridges this gap by proposing a relaxed alternating direction method of multiplier algorithm.It can also improve the computation efficiency compared with the conventional alternating direction of the multiplier algorithm.Case studies of two test systems are carried out to show the validity and superiority of the proposed algorithm.展开更多
This paper proposes an integrated electricity-ther-mal energy management system(EMS)for high-speed railways.First,an operational model is built for the integrated electricity-thermal system,including a train operation...This paper proposes an integrated electricity-ther-mal energy management system(EMS)for high-speed railways.First,an operational model is built for the integrated electricity-thermal system,including a train operation EMS(TO-EMS)model and station operation EMS(SO-EMS)model.In the TO-EMS model,traction grids(TGs)are formulated with a solvable second-order cone programming problem.In the SO-EMS model,station indoor thermal systems are taken into account,and the building heat exchange process and solar radiation influence upon station indoor temperature are also included.Then the TO-EMS and the SO-EMS are coordinated with an alternating direction method of the multipliers-based(ADMM-based)algo-rithm,protecting the privacy and interests both for the train dispatch center and stations.To demonstrate the effectiveness of the proposed railway EMS,a modified realistic high-speed railway segment with six stations in North China with summer and winter scenarios is studied.展开更多
基金This project is supported by the National Natural Science Foundation of China
文摘In this paper we design an approximation method for solving stochastic programs with com-plete recourse and nonlinear deterministic constraints. This method is obtained by combiningapproximation method and Lagrange multiplier algorithm of Bertsekas type. Thus this methodhas the advantages of both the two.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
基金the National Natural Science Foundation of China(61833012,61773162,61590924)the Natural Science Foundation of Shanghai(18ZR1420000)。
文摘This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
基金Sponsored by the National Natural Science Foundation of China(Grant No.U1813222)the Tianjin Natural Science Foundation(Grant No.18JCYBJC16500)+1 种基金the Hebei Province Natural Science Foundation(Grant No.E2016202341)the Research Project on Graduate Training in Hebei University of Technology(Grant No.201801Y006).
文摘Aiming at the problem that a large number of array elements are needed for uniform arrays to meet the requirements of direction map,a sparse array pattern synthesis method is proposed in this paper based on the sparse sensing theory.First,the Orthogonal Matching Pursuit(OMP)algorithm and the Exact Augmented Lagrange Multiplier(EALM)algorithm were improved in the sparse sensing theory to obtain a more efficient Orthogonal Multi⁃Matching Pursuit(OMMP)algorithm and the Semi⁃Exact Augmented Lagrange Multiplier(SEALM)algorithm.Then,the two improved algorithms were applied to linear array and planar array pattern syntheses respectively.Results showed that the improved algorithms could achieve the required pattern with very few elements.Numerical simulations verified the effectiveness and superiority of the two synthetic methods.In addition,compared with the existing sparse array synthesis method,the proposed method was more robust and accurate,and could maintain the advantage of easy implementation.
文摘The purpose of this paper is threefold.(i) To explain the effective Kohn algorithm for multipliers in the complex Neumann problem and its difference with the full-real-radical Kohn algorithm, especially in the context of an example of Catlin-D'Angelo concerning the ineffectiveness of the latter.(ii) To extend the techniques of multiplier ideal sheaves for the complex Neumann problem to general systems of partial differential equations.(iii) To present a new procedure of generation of multipliers in the complex Neumann problem as a special case of the multiplier ideal sheaves techniques for general systems of partial differential equations.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province(No.2020B010166004)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011408)+2 种基金the Science and Technology Program of Guangzhou(No.201904010215)the Talent Recruitment Project of Guangdong(No.2017GC010467)the Fundamental Research Funds for the Central Universities
文摘In order to obtain an accurate state estimation of the operation in the combined heat and power system,it is necessary to carry out state estimation.Due to the limited information sharing among various energy systems,it is practical to perform state estimation in a decentralized manner.However,the possible communication packet loss is seldomly considered among various energy systems.This paper bridges this gap by proposing a relaxed alternating direction method of multiplier algorithm.It can also improve the computation efficiency compared with the conventional alternating direction of the multiplier algorithm.Case studies of two test systems are carried out to show the validity and superiority of the proposed algorithm.
基金This work was supported in part by the National Key Research and Development Program of China(2016YFB0901900)in part by the National Natural Science Foundation of China(51637008).
文摘This paper proposes an integrated electricity-ther-mal energy management system(EMS)for high-speed railways.First,an operational model is built for the integrated electricity-thermal system,including a train operation EMS(TO-EMS)model and station operation EMS(SO-EMS)model.In the TO-EMS model,traction grids(TGs)are formulated with a solvable second-order cone programming problem.In the SO-EMS model,station indoor thermal systems are taken into account,and the building heat exchange process and solar radiation influence upon station indoor temperature are also included.Then the TO-EMS and the SO-EMS are coordinated with an alternating direction method of the multipliers-based(ADMM-based)algo-rithm,protecting the privacy and interests both for the train dispatch center and stations.To demonstrate the effectiveness of the proposed railway EMS,a modified realistic high-speed railway segment with six stations in North China with summer and winter scenarios is studied.