期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Multidimensional attention and multiscale upsampling for semantic segmentation
1
作者 LU Zhongda ZHANG Chunda +1 位作者 WANG Lijing XU Fengxia 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期68-78,共11页
Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as ... Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as the backbone network and designs an encoder-decoder architecture based on multidimensional attention(MDA)module and multiscale upsampling(MSU)module.The MDA module calculates the attention matrices of the three dimensions to capture the dependency of each position,and adaptively captures the image features.The MSU module adopts parallel branches to capture the multiscale features of the images,and multiscale feature aggregation can enhance contextual information.A series of experiments demonstrate the validity of the model on Cityscapes and Camvid datasets. 展开更多
关键词 semantic segmentation attention mechanism multiscale feature convolutional neural network(CNN) residual network(ResNet)
下载PDF
基于Transformer的多尺度遥感语义分割网络 被引量:1
2
作者 邵凯 王明政 王光宇 《智能系统学报》 CSCD 北大核心 2024年第4期920-929,共10页
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器... 为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。 展开更多
关键词 遥感图像 语义分割 卷积神经网络 TRANSFORMER 全局上下文信息 多尺度感受野 编码器 解码器
下载PDF
基于轻量语义分割网络的遥感土地覆盖分类 被引量:1
3
作者 朱婉玲 贾渊 《计算机系统应用》 2024年第2期134-142,共9页
高分辨率遥感图像有丰富的空间特征,针对遥感土地覆盖方法中模型复杂,边界模糊和多尺度分割等问题,提出了一种基于边界与多尺度信息的轻量化语义分割网络.首先,使用轻量化的MobileNetV3分类器,采用深度可分离卷积来减少计算量.其次,使... 高分辨率遥感图像有丰富的空间特征,针对遥感土地覆盖方法中模型复杂,边界模糊和多尺度分割等问题,提出了一种基于边界与多尺度信息的轻量化语义分割网络.首先,使用轻量化的MobileNetV3分类器,采用深度可分离卷积来减少计算量.其次,使用自顶向下和自底向上的特征金字塔结构来进行多尺度分割.接着,设计了一个边界增强模块,为分割任务提供丰富的边界细节信息.然后,设计了一个特征融合模块,融合边界与多尺度语义特征.最后,使用交叉熵损失函数和Dice损失函数来处理样本不平衡的问题.在WHDLD数据集的平均交并比达到了59.64%,总体精度达到了87.68%.在DeepGlobe数据集的平均交并比达到了70.42%,总体精度达到了88.81%.实验结果表明,该模型能快速有效地实现遥感图像土地覆盖分类. 展开更多
关键词 高分辨率遥感图像 土地覆盖分类 轻量化语义分割 多尺度 边界增强 卷积神经网络
下载PDF
Domain adaptive semantic segmentation by optimal transport
4
作者 Yaqian Guo Xin Wang +1 位作者 Ce Li Shihui Ying 《Fundamental Research》 CAS 2024年第5期981-991,共11页
Scene segmentation is widely used in autonomous driving for environmental perception.Semantic scene segmentation has gained considerable attention owing to its rich semantic information.It assigns labels to the pixels... Scene segmentation is widely used in autonomous driving for environmental perception.Semantic scene segmentation has gained considerable attention owing to its rich semantic information.It assigns labels to the pixels in an image,thereby enabling automatic image labeling.Current approaches are based mainly on convolutional neural networks(CNN),however,they rely on numerous labels.Therefore,the use of a small amount of labeled data to achieve semantic segmentation has become increasingly important.In this study,we developed a domain adaptation framework based on optimal transport(OT)and an attention mechanism to address this issue.Specifically,we first generated the output space via a CNN owing to its superior of feature representation.Second,we utilized OT to achieve a more robust alignment of the source and target domains in the output space,where the OT plan defined a well attention mechanism to improve the adaptation of the model.In particular,the OT reduced the number of network parameters and made the network more interpretable.Third,to better describe the multiscale properties of the features,we constructed a multiscale segmentation network to perform domain adaptation.Finally,to verify the performance of the proposed method,we conducted an experiment to compare the proposed method with three benchmark and four SOTA methods using three scene datasets.The mean intersection-over-union(mIOU)was significantly improved,and visualization results under multiple domain adaptation scenarios also show that the proposed method performed better than semantic segmentation methods. 展开更多
关键词 semantic scene segmentation Unsupervised domain adaptation Optimal transport Deep learning multiscale network
原文传递
DeepLab V3+改进的树木图像分割 被引量:2
5
作者 林宁宁 高心丹 《计算机工程与设计》 北大核心 2023年第1期232-239,共8页
针对树木图像分割需要预处理、人机交互和分割精度低等问题,提出基于改进的DeepLab V3+的街道树木图像分割方法。在编码端使用带有扩张卷积的扩张残留网络并添加密集连接方式提取中阶特征图,传递给设计有交互信息传递的空洞空间卷积池... 针对树木图像分割需要预处理、人机交互和分割精度低等问题,提出基于改进的DeepLab V3+的街道树木图像分割方法。在编码端使用带有扩张卷积的扩张残留网络并添加密集连接方式提取中阶特征图,传递给设计有交互信息传递的空洞空间卷积池化金字塔,增强了不同感受野之间的相关性,采用多尺度拼接融合方法形成高阶特征图。在解码端,对多增加的中阶特征图和高阶特征图进行上采样后调整通道数,与低阶特征图进行跨层拼接融合,使高分辨率图像的细节信息得到更好的补充。在自制树木图像分割数据集以及Cityscapes公共数据集上的精度相较DeepLab V3+以及其它主流网络有所提高。 展开更多
关键词 树木图像 语义分割 空洞卷积 密集卷积网络 多尺度融合 扩张残留网络 卷积神经网络
下载PDF
结合多尺度特征和注意力机制的公路裂缝检测 被引量:3
6
作者 张瑞燕 《现代电子技术》 2023年第3期100-104,共5页
由于航拍公路裂缝数据缺乏并且裂缝图像存在目标小、分布复杂的特点,导致语义分割模型在航拍公路裂缝检测中效果差,影响模型在实际场景的应用,为此提出基于改进DeeplabV3+的公路裂缝检测方法。构建语义分割模型,选定DeeplabV3+模型并作... 由于航拍公路裂缝数据缺乏并且裂缝图像存在目标小、分布复杂的特点,导致语义分割模型在航拍公路裂缝检测中效果差,影响模型在实际场景的应用,为此提出基于改进DeeplabV3+的公路裂缝检测方法。构建语义分割模型,选定DeeplabV3+模型并作如下优化:由于低级特征包含更多裂缝细节信息,增加了提取低级特征的路径,从ASPP模块输出的特征为高级特征,高级特征包含更多语义信息,将两者信息进行融合能保证模型不丢失裂缝的细节信息;在网络中嵌入SCSE注意力模块抑制对其他无关信息的响应,改善模型在裂缝数据集检测效果差的问题。实验结果表明,改进DeeplabV3+算法可以有效解决模型对小目标裂缝分割时效果差的问题,模型的检测精度提高了2.59%,具有较强的应用价值,可以为实际公路裂缝检测提供参考。 展开更多
关键词 道路裂缝 裂缝检测 语义分割 多尺度特征融合 注意力机制 深度学习 网络模型改进 智能检测
下载PDF
融合注意力机制的肠道息肉分割多尺度卷积神经网络 被引量:1
7
作者 单芳湄 王梦文 李敏 《图学学报》 CSCD 北大核心 2023年第1期50-58,共9页
肠道息肉分割能够提供息肉在结肠中的位置和形态信息,方便医生依据其结构变化程度来推断癌变可能性,有利于结肠癌的早期诊断和治疗。针对许多现有的卷积神经网络所提取的多尺度特征有限,且常引入冗余和干扰特征,难以应对复杂多变的肠道... 肠道息肉分割能够提供息肉在结肠中的位置和形态信息,方便医生依据其结构变化程度来推断癌变可能性,有利于结肠癌的早期诊断和治疗。针对许多现有的卷积神经网络所提取的多尺度特征有限,且常引入冗余和干扰特征,难以应对复杂多变的肠道息肉分割问题,提出了一种融合注意力机制的肠道息肉分割多尺度卷积神经网络(CNN)。首先,设计不同比例金字塔池化策略提取丰富的多尺度上下文信息;然后,通过在网络中融入通道注意力机制,模型能够根据目标自适应地选择合适的局部上下文信息和全局上下文信息进行特征集成;最后,联合金字塔池化策略和通道注意力机制构建多尺度有效语义融合解码网络,增强模型对形状、大小复杂多变的肠道息肉分割的鲁棒性。实验结果表明,本文模型分割的Dice系数、IoU和灵敏度在CVC-ClinicDB数据集上分别为90.6%,84.4%和91.1%,在ETIS-Larib数据集上分别为80.6%,72.6%和79.0%,其能够从肠镜图像中准确、有效地分割出肠道息肉。 展开更多
关键词 息肉分割 肠镜图像 卷积神经网络 多尺度语义信息 注意力机制
下载PDF
多尺度特征融合的建筑物及损毁语义分割 被引量:2
8
作者 马国锐 吴娇 姚聪 《测绘工程》 CSCD 2020年第4期1-6,共6页
遥感影像分割作为影像信息提取过程中的关键步骤,近年来基于深度学习的影像语义分割模型已经成为影像分割的主要研究导向。文中提出一种基于深度学习的多尺度特征融合语义分割网络,用来分割遥感影像中建筑物和损毁建筑物,该网络充分利... 遥感影像分割作为影像信息提取过程中的关键步骤,近年来基于深度学习的影像语义分割模型已经成为影像分割的主要研究导向。文中提出一种基于深度学习的多尺度特征融合语义分割网络,用来分割遥感影像中建筑物和损毁建筑物,该网络充分利用不同尺度特征图的信息,获得更精确的分割边缘。同时探究了不同样本数量和不同网络深度对于训练得到模型分割性能的影响,对深度学习网络应用于遥感影像参数选择提供了一定经验指导。 展开更多
关键词 高分辨率遥感影像 深度学习 语义分割 多尺度特征 分割网络
下载PDF
优化FPN的高分辨率遥感影像多类别地物语义分割 被引量:1
9
作者 李卫东 梁鑫婕 +2 位作者 刘钦灏 时春波 左晨威 《遥感信息》 CSCD 北大核心 2022年第5期1-7,共7页
针对高分辨遥感影像多类别地物存在类间不平衡、类别区分度低造成的语义分割方法鲁棒性弱和分割精度不高问题,基于UNet、特征金字塔网络(feature pyramid networks,FPN)、DeepLabV3+、HRNet 4种2D多尺度特征融合的卷积神经网络模型架构... 针对高分辨遥感影像多类别地物存在类间不平衡、类别区分度低造成的语义分割方法鲁棒性弱和分割精度不高问题,基于UNet、特征金字塔网络(feature pyramid networks,FPN)、DeepLabV3+、HRNet 4种2D多尺度特征融合的卷积神经网络模型架构,对多尺度特征融合技术进行了探讨,通过数据预处理、损失函数、模型预训练等因素对精细土地覆盖的语义分割(多达16个语义类别)进行了模型能力的测试和实验,其中FPN语义分割精细化程度最高。在此基础上,基于EfficientNetB1的FPN模型进行预训练,利用focal loss损失函数选择最优多尺度特征融合,通过超参数搜索损失函数参数最优值进行优化集成,最终训练出性能优异的FPN模型,准确率提高了1.5%,Kappa提高了1.9%,进一步提高了模型对多类别地物的识别能力和泛化能力。 展开更多
关键词 语义分割 多尺度特征融合 FPN 卷积神经网络 多类别地物
下载PDF
多尺度遥感语义分割网络 被引量:10
10
作者 胥智杰 杨小兵 +1 位作者 何灵敏 潘承瑞 《计算机工程与应用》 CSCD 北大核心 2020年第21期210-217,共8页
高分辨率遥感图像语义分割在国土规划、地理监测、智慧城市等领域有着广泛的应用价值,但是现阶段研究中存在相似地物和精细地物分割不准确问题。为解决这一问题,提出了一种新型的多尺度语义分割网络MSSNet。它由编码层、解码层和输出层... 高分辨率遥感图像语义分割在国土规划、地理监测、智慧城市等领域有着广泛的应用价值,但是现阶段研究中存在相似地物和精细地物分割不准确问题。为解决这一问题,提出了一种新型的多尺度语义分割网络MSSNet。它由编码层、解码层和输出层组成。为解决相似地物的分割问题,编码层使用深层网络ResNet101充分提取地物特征,并在解码层的解码器中加入残差块,提高基于像素点的分类能力。为解决精细结构地物的分割问题,解码层中的解码器加入了空洞空间金字塔池化结构提取多尺度地物特征,以便精确分割不同尺度的地物。为了强化语义分割能力,输出层合并了多个解码器的输出,为最终的预测提供了更多的信息。在两个公开数据集Vaihingen和Potsdam上进行了实验,分别取得了87%和87.3%的全局精确度,超过了大多数已发表的方法。实验结果表明,提出的MSSNet能够精确地分割相似地物和精细地物,并且具有训练过程简单和易于使用的优点,非常适合进行高分辨率遥感图像语义分割。 展开更多
关键词 高分辨率遥感图像 语义分割 深度学习 多尺度语义分割网络(mssnet)
下载PDF
基于神经网络的遥感图像语义分割方法 被引量:15
11
作者 王恩德 齐凯 +1 位作者 李学鹏 彭良玉 《光学学报》 EI CAS CSCD 北大核心 2019年第12期85-96,共12页
为了提高遥感图像语义分割的效果和分类精度,设计了一种结合ResNet18网络预训练模型的双通道图像特征提取网络。将多重图像特征图进行拼接,融合后的特征图具有更强的特征表达能力。同时,采用批标准化层和带有位置索引的最大池化方法进... 为了提高遥感图像语义分割的效果和分类精度,设计了一种结合ResNet18网络预训练模型的双通道图像特征提取网络。将多重图像特征图进行拼接,融合后的特征图具有更强的特征表达能力。同时,采用批标准化层和带有位置索引的最大池化方法进一步优化网络结构,提升地表目标物的分类准确率。通过实验,将所提方法与多种神经网络方法进行准确率和Kappa系数比较。结果显示,所提的网络结构可以在小数据量样本下取得90.68%的总体准确率,Kappa系数达到了0.8595。相比其他方法,所提算法取得了更好的语义分割效果,并且整体训练时间大幅缩短。 展开更多
关键词 图像处理 全卷积神经网络 语义分割 双通道网络 多尺度特征 遥感图像
原文传递
多尺度特征融合工件目标语义分割 被引量:10
12
作者 和超 张印辉 何自芬 《中国图象图形学报》 CSCD 北大核心 2020年第3期476-485,共10页
目的目标语义特征提取效果直接影响图像语义分割的精度,传统的单尺度特征提取方法对目标的语义分割精度较低,为此,提出一种基于多尺度特征融合的工件目标语义分割方法,利用卷积神经网络提取目标的多尺度局部特征语义信息,并将不同尺度... 目的目标语义特征提取效果直接影响图像语义分割的精度,传统的单尺度特征提取方法对目标的语义分割精度较低,为此,提出一种基于多尺度特征融合的工件目标语义分割方法,利用卷积神经网络提取目标的多尺度局部特征语义信息,并将不同尺度的语义信息进行像素融合,使神经网络充分捕获图像中的上下文信息,获得更好的特征表示,有效实现工件目标的语义分割。方法使用常用的多类工件图像定义视觉任务,利用残差网络模块获得目标的单尺度语义特征图,再结合本文提出的多尺度特征提取方式获得不同尺度的局部特征语义信息,通过信息融合获得目标分割图。使用上述方法经多次迭代训练后得到与视觉任务相关的工件目标分割模型,并对训练权重与超参数进行保存。结果将本文方法和传统的单尺度特征提取方法做定性和定量的测试实验,结果表明,获得的分割网络模型对测试集中的目标都具有较精确的分割能力,与单尺度特征提取方法相比,本文方法的平均交并比m IOU(mean intersection over union)指标在验证集上训练精度提高了4.52%,在测试集上分割精度提高了4.84%。当测试样本中包含的目标种类较少且目标边缘清晰时,本文方法能够得到更精准的分割结果。结论本文提出的语义分割方法,通过多尺度特征融合的方式增强了神经网络模型对目标特征的提取能力,使训练得到的分割网络模型比传统的单尺度特征提取方式在测试集上具有更优秀的性能,从而验证了所提出方法的有效性。 展开更多
关键词 残差网络 语义分割 多尺度特征 深度学习 视觉任务
原文传递
残差密集空间金字塔网络的城市遥感图像分割 被引量:7
13
作者 韩彬彬 张月婷 +2 位作者 潘宗序 台宪青 李芳芳 《中国图象图形学报》 CSCD 北大核心 2020年第12期2656-2664,共9页
目的遥感图像语义分割是根据土地覆盖类型对图像中每个像素进行分类,是遥感图像处理领域的一个重要研究方向。由于遥感图像包含的地物尺度差别大、地物边界复杂等原因,准确提取遥感图像特征具有一定难度,使得精确分割遥感图像比较困难... 目的遥感图像语义分割是根据土地覆盖类型对图像中每个像素进行分类,是遥感图像处理领域的一个重要研究方向。由于遥感图像包含的地物尺度差别大、地物边界复杂等原因,准确提取遥感图像特征具有一定难度,使得精确分割遥感图像比较困难。卷积神经网络因其自主分层提取图像特征的特点逐步成为图像处理领域的主流算法,本文将基于残差密集空间金字塔的卷积神经网络应用于城市地区遥感图像分割,以提升高分辨率城市地区遥感影像语义分割的精度。方法模型将带孔卷积引入残差网络,代替网络中的下采样操作,在扩大特征图感受野的同时能够保持特征图尺寸不变;模型基于密集连接机制级联空间金字塔结构各分支,每个分支的输出都有更加密集的感受野信息;模型利用跳线连接跨层融合网络特征,结合网络中的高层语义特征和低层纹理特征恢复空间信息。结果基于ISPRS(International Society for Photogrammetry and Remote Sensing)Vaihingen地区遥感数据集展开充分的实验研究,实验结果表明,本文模型在6种不同的地物分类上的平均交并比和平均F1值分别达到69.88%和81.39%,性能在数学指标和视觉效果上均优于SegNet、pix2pix、Res-shuffling-Net以及SDFCN(symmetrical dense-shortcut fully convolutional network)算法。结论将密集连接改进空间金字塔池化网络应用于高分辨率遥感图像语义分割,该模型利用了遥感图像不同尺度下的特征、高层语义信息和低层纹理信息,有效提升了城市地区遥感图像分割精度。 展开更多
关键词 语义分割 遥感影像 多尺度 残差卷积网络 密集连接
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部