期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A generic approach to the dynamical interpretation of ocean-atmosphere processes
1
作者 X. San Liang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期74-92,共19页
This paper summarizes the recent development of a portable self-contained system to unravel the intricate multiscale dynamical processes from real oceanic flows, which are in nature highly nonlinear and intermittent i... This paper summarizes the recent development of a portable self-contained system to unravel the intricate multiscale dynamical processes from real oceanic flows, which are in nature highly nonlinear and intermittent in space and time. Of particular focus are the interactions among largescale, mesoscale, and submesoscale processes.We firsu introduce the concept of scale window, and an orthogonal subspace decomposition technigue called multiscale window transform (MWT). Established on MWT is a rigorous formalism of multiscale transport, perfect transfer, and multiscale conversion, which makes a new methodology, multiscale energy and vorticity analysis (MS-EVA). A direct application of the MS-EVA is the development of a novel localized instability analysis, generalizing the classical notion of hydrodynamic instability to finite amplitude processes on irregularly variable domains. The theory is consistent with the analytical solutions of Eady's model and Kuo's model, the benchmark models of baroclinic instability and barotropic instability; it is further validated with a vortex shedding control problem. We have put it to application with a variety of complicated real ocean problems, which would be otherwise very difficult, if not impossible, to tackle. Briefly shown in this paper include the dynamical studies of a highly variable open ocean front, and a complex coastal ocean circulation. In the former, it is found that underlying the frontal meandering is a convective instability followed by an absolute instability, and correspondingly a rapid spatially amplifying mode locked into a temporally growing mode; in the latter, we see a real ocean example of how upwelling can be driven by winds through nonlinear instability, and how winds may excite the ocean via an avenue which is distinctly different from the classical paradigms. This system is mathematically rigorous, physically robust, and practically straightforward. 展开更多
关键词 multiscale energy and vorticity analysis multiscale window transform multiscale transport perfect transfer finite-amplitude hydrodynamic instability analysis mean-eddy-turbulence interaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部