In this paper,we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz's inversions formulas and Jackson s transformation formula.In terms of application,by speciali...In this paper,we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz's inversions formulas and Jackson s transformation formula.In terms of application,by specializing certain parameters in the two transformations,four Rogers-Ramanujan type identities associated with moduli 20 are obtained.展开更多
By introducing multiparameter generalization of Bailey pair,the purpose of this paper is to find a number of new Rogers-Ramanujan-Bailey type identities.
In the literature, the Bailey transform has many applications in basic hypergeometric series. In this paper, we derive many new transformation formulas for q-series by means of the Bailey transform. Meanwhile, We also...In the literature, the Bailey transform has many applications in basic hypergeometric series. In this paper, we derive many new transformation formulas for q-series by means of the Bailey transform. Meanwhile, We also obtain some new terminated identities. Furthermore, we establish a companion identity to the Rogers-Ramanujan identity labelled by number (23) on Slater’s list.展开更多
The importance of basic hypergeometric series has been widely recognized. For non specialists, it is necessary to have a quick introduction to this classical but flourishing subject. An effort along this direction wil...The importance of basic hypergeometric series has been widely recognized. For non specialists, it is necessary to have a quick introduction to this classical but flourishing subject. An effort along this direction will be made in the present article.展开更多
In the "lost notebook", Ramanujan recorded infinite product expansions for where r -= r(q) is the Rogers-Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan's function k ...In the "lost notebook", Ramanujan recorded infinite product expansions for where r -= r(q) is the Rogers-Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan's function k = k(q) = r(q)r2 (q2).展开更多
基金supported by the National Natural Science Foundation of China(12271234)。
文摘In this paper,we establish two transformation formulas for nonterminating basic hypergeometric series by using Carlitz's inversions formulas and Jackson s transformation formula.In terms of application,by specializing certain parameters in the two transformations,four Rogers-Ramanujan type identities associated with moduli 20 are obtained.
基金Supported by the National Natural Science Foundation of China(10771093)
文摘By introducing multiparameter generalization of Bailey pair,the purpose of this paper is to find a number of new Rogers-Ramanujan-Bailey type identities.
文摘In the literature, the Bailey transform has many applications in basic hypergeometric series. In this paper, we derive many new transformation formulas for q-series by means of the Bailey transform. Meanwhile, We also obtain some new terminated identities. Furthermore, we establish a companion identity to the Rogers-Ramanujan identity labelled by number (23) on Slater’s list.
文摘The importance of basic hypergeometric series has been widely recognized. For non specialists, it is necessary to have a quick introduction to this classical but flourishing subject. An effort along this direction will be made in the present article.
文摘In the "lost notebook", Ramanujan recorded infinite product expansions for where r -= r(q) is the Rogers-Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan's function k = k(q) = r(q)r2 (q2).