A multivalent inactivated Escherichia coli vaccine for forest musk deer by using serotypes O4,O26,and O139 with Al(OH)3 adjuvant was prepared.The vaccine did not cause any adverse reactions in forest musk deer.The i...A multivalent inactivated Escherichia coli vaccine for forest musk deer by using serotypes O4,O26,and O139 with Al(OH)3 adjuvant was prepared.The vaccine did not cause any adverse reactions in forest musk deer.The immunogenic effects of the vaccine were experimentally investigated in pregnant and young forest musk deer.The serum antibody titers of pregnant and young forest musk deer were determined by performing the micro-agglutination test.The serum antibody titers of pregnant forest musk deer were more stable from 35th to 68th d after the third vaccination,and the serum antibody titers of four pregnant forest musk deer were maintained 25,25,25,and 24 on 68th d after the third vaccination.Young forest musk deer showed serum antibody titers which were obtained due to nursing.Young forest musk deer were administered the first intramuscular vaccine injection at an age of approximately 60 days due to a fall in maternal antibody titers.The serum antibody titers of young forest musk deer were higher after the third vaccination and maintained at approximately the same level until they were 137 days old.The maternal antibodies and the antibodies produced by young forest musk deer could be helpful for protecting the young musk deer from the infections of pathogenic Escherichia coli strains(serotypes O4,O26,and O139)for 137 days after birth(during the nursing period and the period when the forest musk deer were susceptible to diseases).展开更多
Objective:This study aimed to describe,optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides(CPs)with tetanus toxoi...Objective:This study aimed to describe,optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides(CPs)with tetanus toxoid(TT)as bivalent conjugates.Methods:Different molecular weights(MWs)of polysaccharides,activating agents and capsular polysaccharide/protein(CP/Pro)ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk.Using the described method and optimized parameters,a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models.Results:The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC,while higher MWs were superior for Pn4-TT-Pn14,Pn6A-TT-Pn6B,Pn7F-TT-Pn23F and Pn8-TT-Pn11A.For activating polysaccharides,1-cyano-4-dimethylaminopyridinium tetrafluoroborate(CDAP)was superior to cyanogen bromide(CNBr),but for Pn1,Pn3 and MenC,N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride(EDAC)was the most suitable option.For Pn6A-TT-Pn6B and Pn8-TT-Pn11A,rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses,while for Pn4-TT-Pn14,higher CP/Pro ratio was better.Instead of interfering with the respective immunological activity,our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts.Conclusion:The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines,laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.展开更多
Hand,foot,and mouth disease(HFMD)recently emerged as a global public threat.The licensure of inactivated enterovirus A71(EV-A71)vaccine was the first step in using a vaccine to control HFMD.New challenges arise from c...Hand,foot,and mouth disease(HFMD)recently emerged as a global public threat.The licensure of inactivated enterovirus A71(EV-A71)vaccine was the first step in using a vaccine to control HFMD.New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage.The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines.The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes.The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a crossprotective antibody response.展开更多
Background The vaccination of mice with DNA encoding single candidate antigens has failed to induce significant protection against Schistosoma japonicum (S. japonicum) challenge infections In this study, we evaluated ...Background The vaccination of mice with DNA encoding single candidate antigens has failed to induce significant protection against Schistosoma japonicum (S. japonicum) challenge infections In this study, we evaluated the feasibility of using a multivalent DNA vaccine which co expressed S japonicum integral membrane protein Sj23 and murine cytokine IL 12 to induce protective immune responses Methods The plasmid pVIVO2 IL12 Sj23, a eukaryotic expression vector expressing Sj23 and murine IL 12 simultaneously, was constructed, identified, and tested for expression in vitro Its ability to protect against S japonicum challenge infections was analyed according to worm reduction rate and egg reduction rate after vaccination of BALB/c mice The serum levels of specific IgG antibody were determined by enzyme linked immuno sorbent assay (ELISA) and Western blot analysis Using cultured spleen cells, IFN γ and IL 4 post stimulation were quantified by ELISA The phenotypes of splenocyte populations were analyzed by flow cytometry (FCM) Results The plasmid DNA pVIVO2 IL12 Sj23 was proven to express well in vitro by transient transfection of HEK 293 cells Immunization resulted in a worm reduction rate of 45 53% and egg reduction rate of 58 35% ELISA and Western blot analysis indicated that immunized mice generated specific IgG against Sj23 Spleen cells showed significant increases in IFN γ but decreases in IL 4 No significant differences in CD4 + and CD8 + subgroup ratios were observed after the challenges Conclusions The multivalent DNA vaccine pVIVO2 IL12 Sj23 is sufficient to elicit moderate but highly significant levels of protective immunity against challenge infections Cytokine IL 12, as a gene adjuvant, was able to enhance the Th1 responses and, hence, the protective immunity展开更多
基金Supported by Youth Foundation of Education Department in Sichuan Province(07ZB060)Scientific and Technological Supporting Project in Science and Technology Bureau of Sichuan Province(2009SZ0228)~~
文摘A multivalent inactivated Escherichia coli vaccine for forest musk deer by using serotypes O4,O26,and O139 with Al(OH)3 adjuvant was prepared.The vaccine did not cause any adverse reactions in forest musk deer.The immunogenic effects of the vaccine were experimentally investigated in pregnant and young forest musk deer.The serum antibody titers of pregnant and young forest musk deer were determined by performing the micro-agglutination test.The serum antibody titers of pregnant forest musk deer were more stable from 35th to 68th d after the third vaccination,and the serum antibody titers of four pregnant forest musk deer were maintained 25,25,25,and 24 on 68th d after the third vaccination.Young forest musk deer showed serum antibody titers which were obtained due to nursing.Young forest musk deer were administered the first intramuscular vaccine injection at an age of approximately 60 days due to a fall in maternal antibody titers.The serum antibody titers of young forest musk deer were higher after the third vaccination and maintained at approximately the same level until they were 137 days old.The maternal antibodies and the antibodies produced by young forest musk deer could be helpful for protecting the young musk deer from the infections of pathogenic Escherichia coli strains(serotypes O4,O26,and O139)for 137 days after birth(during the nursing period and the period when the forest musk deer were susceptible to diseases).
文摘Objective:This study aimed to describe,optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides(CPs)with tetanus toxoid(TT)as bivalent conjugates.Methods:Different molecular weights(MWs)of polysaccharides,activating agents and capsular polysaccharide/protein(CP/Pro)ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk.Using the described method and optimized parameters,a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models.Results:The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC,while higher MWs were superior for Pn4-TT-Pn14,Pn6A-TT-Pn6B,Pn7F-TT-Pn23F and Pn8-TT-Pn11A.For activating polysaccharides,1-cyano-4-dimethylaminopyridinium tetrafluoroborate(CDAP)was superior to cyanogen bromide(CNBr),but for Pn1,Pn3 and MenC,N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride(EDAC)was the most suitable option.For Pn6A-TT-Pn6B and Pn8-TT-Pn11A,rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses,while for Pn4-TT-Pn14,higher CP/Pro ratio was better.Instead of interfering with the respective immunological activity,our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts.Conclusion:The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines,laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.
基金sponsored by the National Natural Science Foundation of China(81672018)the National 13th Five-Year Grand Program on Key Infectious Disease Control(2017ZX10202102)+2 种基金the 13th Five-Year National Science and Technology Major Project for infectious Diseases(2017ZX10305501-002)Shanghai Pujiang Program(19PJ1409100)the Technology Service Platform for Detecting High level Biological Safety Pathogenic Microorganism Supported by Shanghai Science and Technology Commission(18DZ2293000)。
文摘Hand,foot,and mouth disease(HFMD)recently emerged as a global public threat.The licensure of inactivated enterovirus A71(EV-A71)vaccine was the first step in using a vaccine to control HFMD.New challenges arise from changes in the pathogen spectrum while vaccines directed against other common serotypes are in the preclinical stage.The mission of a broad-spectrum prevention strategy clearly favors multivalent vaccines.The development of multivalent vaccines was attempted via the simple combination of potent monovalent vaccines or the construction of chimeric vaccines comprised of epitopes derived from different virus serotypes.The present review summarizes recent advances in HFMD vaccine development and discusses the next steps toward a safe and effective HFMD vaccine that is capable of establishing a crossprotective antibody response.
文摘Background The vaccination of mice with DNA encoding single candidate antigens has failed to induce significant protection against Schistosoma japonicum (S. japonicum) challenge infections In this study, we evaluated the feasibility of using a multivalent DNA vaccine which co expressed S japonicum integral membrane protein Sj23 and murine cytokine IL 12 to induce protective immune responses Methods The plasmid pVIVO2 IL12 Sj23, a eukaryotic expression vector expressing Sj23 and murine IL 12 simultaneously, was constructed, identified, and tested for expression in vitro Its ability to protect against S japonicum challenge infections was analyed according to worm reduction rate and egg reduction rate after vaccination of BALB/c mice The serum levels of specific IgG antibody were determined by enzyme linked immuno sorbent assay (ELISA) and Western blot analysis Using cultured spleen cells, IFN γ and IL 4 post stimulation were quantified by ELISA The phenotypes of splenocyte populations were analyzed by flow cytometry (FCM) Results The plasmid DNA pVIVO2 IL12 Sj23 was proven to express well in vitro by transient transfection of HEK 293 cells Immunization resulted in a worm reduction rate of 45 53% and egg reduction rate of 58 35% ELISA and Western blot analysis indicated that immunized mice generated specific IgG against Sj23 Spleen cells showed significant increases in IFN γ but decreases in IL 4 No significant differences in CD4 + and CD8 + subgroup ratios were observed after the challenges Conclusions The multivalent DNA vaccine pVIVO2 IL12 Sj23 is sufficient to elicit moderate but highly significant levels of protective immunity against challenge infections Cytokine IL 12, as a gene adjuvant, was able to enhance the Th1 responses and, hence, the protective immunity
基金Supported by the National Key Technology R&D Program(No.2009BAI7805)the Science and Technology Plan of Hunan Provincial Science and Technology Department(No.2011SK3020)~~