This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equati...This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equations which are solved by using the Kronecker product of matrices. It is pointed out that the sampling periods can be selected in a convenient way for the solvability of such equations under rather weak conditions provided that the continuous plant is spectrally controllable. Some overview about the use of nonuniform sampling is also given in order to improve the system's performance.展开更多
In the present paper, the formulae for matrix Padé-type approximation were improved. The mixed model reduction method of matrix Padé-type-Routh for the multivariable linear systems was presented. A well-know...In the present paper, the formulae for matrix Padé-type approximation were improved. The mixed model reduction method of matrix Padé-type-Routh for the multivariable linear systems was presented. A well-known example was given to illustrate that the mixed method is efficient.展开更多
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe...This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.展开更多
In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single...In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.展开更多
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and...In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.展开更多
A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the a...A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the application of kernel method in decoupling multivariable output feedback controllers. Simulation results are presented to show the feasibility of the proposed technique.展开更多
In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square s...In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square systems and to propose a systematic method to compute the multimodel synthesis parameters. The effectiveness of the proposed emulators is shown through two simulation examples. The obtained results are very satisfactory, they illustrate the performance of both emulators and show the advantages of the multimodel emulator relatively to the neural one.展开更多
By using the stochastic martingale theory, convergence properties of stochastic gradient (SG) identification algorithms are studied under weak conditions. The analysis indicates that the parameter estimates by the S...By using the stochastic martingale theory, convergence properties of stochastic gradient (SG) identification algorithms are studied under weak conditions. The analysis indicates that the parameter estimates by the SG algorithms consistently converge to the true parameters, as long as the information vector is persistently exciting (i.e., the data product moment matrix has a bounded condition number) and that the process noises are zero mean and uncorrelated. These results remove the strict assumptions, made in existing references, that the noise variances and high-order moments exist, and the processes are stationary and ergodic and the strong persis- tent excitation condition holds. This contribution greatly relaxes the convergence conditions of stochastic gradient algorithms. The simulation results with bounded and unbounded noise variances confirm the convergence conclusions proposed.展开更多
The vast majority of today's agtering ayateas poas operational constsinta and have multiple inputa and outputa.This classifen them an Mults-Input Multi-Orutput(MIMO)ayn tena.This pape devekops a novel obeerver-has...The vast majority of today's agtering ayateas poas operational constsinta and have multiple inputa and outputa.This classifen them an Mults-Input Multi-Orutput(MIMO)ayn tena.This pape devekops a novel obeerver-hased fault diagnoas schene with the capability d simultaneoua state and actuator fault estimation for Linear Time-In ariant(LTI)MIMO aystenaa,which is then integrated with Model Predictive Control(MPC)method for achie ving fault-tolerant control.The application within this study is chosen to be the longitudinal flight control o a fixad-wing Unmanmed Aerial Vetücle(UAV).The oberver-based method is dom hüned with two MPC schemas to detect and compansate randomly oeeurring actuator faults in real time.The faults are modeled asa Lans Of Efkctiveess(LOE).For the first(dfident)MPCmethod,a simpke remnniguration can be perkormed in the esent of faulta,as it is based on a abaolute Input foemmlation.Howeve,as the seeond(integrd-action)MPC is based on a incamen tal input formulation,rconfiguration is notrequired,sinee this algorithm has°rc of implicst fault tokeranee.Numerfcal simulationa danstrate the afetivens of the panposed approach for both MPC sebemes.展开更多
文摘This paper considers the pole placement in multivariable systems involving known delays by using dynamic controllers subject to multirate sampling. The controller parameterizations are calculated from algebraic equations which are solved by using the Kronecker product of matrices. It is pointed out that the sampling periods can be selected in a convenient way for the solvability of such equations under rather weak conditions provided that the continuous plant is spectrally controllable. Some overview about the use of nonuniform sampling is also given in order to improve the system's performance.
基金Project supported by National Natural Science Foundation of China (Grant No .10271074)
文摘In the present paper, the formulae for matrix Padé-type approximation were improved. The mixed model reduction method of matrix Padé-type-Routh for the multivariable linear systems was presented. A well-known example was given to illustrate that the mixed method is efficient.
文摘This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
文摘In this paper, a geometric approach to fault detection and isolation (FDI) is applied to a Multiple-Input Multipie-Output (MIMO) model of a frame and the FDI results are compared to the ones obtained in the Single-Input Single-Output (SISO), Multiple-Input Single-Output (MISO), and Single-Input Multiple-Output (SIMO) cases. A proper distance function based on parameters obtained from parametric system identification method is used in the geometric approach. ARX (Auto Regressive with exogenous input) and VARX (Vector ARX) models with 12 parameters are used in all of the above-mentioned models. The obtained results reveal that by increasing the number of inputs, the classification errors reduce, even in the case of applying only one of the inputs in the computations. Furthermore, increasing the number of measured outputs in the FDI scheme results in decreasing classification errors. Also, it is shown that by using probabilistic space in the distance function, fault diagnosis scheme has better performance in comparison with the deterministic one.
文摘In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed.
文摘A major difficulty in multivariable control design is the cross-coupling between inputs and outputs which obscures the effects of a specific controller on the overall behavior of the system. This paper considers the application of kernel method in decoupling multivariable output feedback controllers. Simulation results are presented to show the feasibility of the proposed technique.
文摘In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square systems and to propose a systematic method to compute the multimodel synthesis parameters. The effectiveness of the proposed emulators is shown through two simulation examples. The obtained results are very satisfactory, they illustrate the performance of both emulators and show the advantages of the multimodel emulator relatively to the neural one.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60574051 and 60674092) the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2007017) and by Program for Innovative Research Team of Jiangnan University
文摘By using the stochastic martingale theory, convergence properties of stochastic gradient (SG) identification algorithms are studied under weak conditions. The analysis indicates that the parameter estimates by the SG algorithms consistently converge to the true parameters, as long as the information vector is persistently exciting (i.e., the data product moment matrix has a bounded condition number) and that the process noises are zero mean and uncorrelated. These results remove the strict assumptions, made in existing references, that the noise variances and high-order moments exist, and the processes are stationary and ergodic and the strong persis- tent excitation condition holds. This contribution greatly relaxes the convergence conditions of stochastic gradient algorithms. The simulation results with bounded and unbounded noise variances confirm the convergence conclusions proposed.
基金supported by the Concordia Graduate Scholarship in Natural Sciences and Engineering and the Natural Sciences and Engineering Research Council of Canada.
文摘The vast majority of today's agtering ayateas poas operational constsinta and have multiple inputa and outputa.This classifen them an Mults-Input Multi-Orutput(MIMO)ayn tena.This pape devekops a novel obeerver-hased fault diagnoas schene with the capability d simultaneoua state and actuator fault estimation for Linear Time-In ariant(LTI)MIMO aystenaa,which is then integrated with Model Predictive Control(MPC)method for achie ving fault-tolerant control.The application within this study is chosen to be the longitudinal flight control o a fixad-wing Unmanmed Aerial Vetücle(UAV).The oberver-based method is dom hüned with two MPC schemas to detect and compansate randomly oeeurring actuator faults in real time.The faults are modeled asa Lans Of Efkctiveess(LOE).For the first(dfident)MPCmethod,a simpke remnniguration can be perkormed in the esent of faulta,as it is based on a abaolute Input foemmlation.Howeve,as the seeond(integrd-action)MPC is based on a incamen tal input formulation,rconfiguration is notrequired,sinee this algorithm has°rc of implicst fault tokeranee.Numerfcal simulationa danstrate the afetivens of the panposed approach for both MPC sebemes.