Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun...Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.展开更多
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi...Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phospho...This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phosphorus (TP). Stepwise linear regression of 1997 to 1999 monitoring data at each sampling point of Qiandaohu Lake yielded the multivariate regression models presented in this paper. The concentration of Chla as simulation for the year 2000 by the regression model was similar to the observed value. The suggested mathematical relationship could be used to predict changes in the lakewater environment at any point in time. The results showed that SD, TP and pH were the most significant factors affecting Chla concentration.展开更多
目的:多元线性回归模型在保持输入自变量光谱信息和空间特征的同时,通过线性变换获取自变量和因变量的光谱拟合关系,对原输入自变量的光谱信息进行优化,从而获得高空间分辨率和丰富光谱信息的重构数据。方法:利用同期获取的OLI(Operatio...目的:多元线性回归模型在保持输入自变量光谱信息和空间特征的同时,通过线性变换获取自变量和因变量的光谱拟合关系,对原输入自变量的光谱信息进行优化,从而获得高空间分辨率和丰富光谱信息的重构数据。方法:利用同期获取的OLI(Operational Land Imager)和PMS(Panchromatic and Multispectral Scanner)多光谱遥感影像,根据最小二乘法构建多元线性回归模型,重构生成具有丰富光谱特征和空间特征的遥感影像,从主客观两个方面评价重构影像的质量。结果:在目视解译(主观)方面,重构影像在一定程度上保留了原OLI影像的光谱特性,提升了原PMS影像的清晰度和分辨性;在量化角度(客观)方面,重构影像的信息量和平均梯度比原OLI对应波段影像的信息量(在部分波段上)和平均梯度要低,但比原PMS影像的信息量和平均梯度要高,可见重构影像的质量介于原PMS影像和OLI影像的质量之间。结论:以青海省门源回族自治县的耕地内不同作物为实例对象,利用最大似然法获取门源县青稞和油菜的空间分布,研究区实测数据验证表明,重构影像对耕地内部青稞与油菜的提取精度高于原PMS和OLI多光谱影像的提取精度。展开更多
文摘Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.
基金supported by the Natural Sciences and Engineering Research Council of Canadathe National Natural Science Foundation of China+2 种基金the Doctorial Fund of Education Ministry of Chinasupported by the Natural Sciences and Engineering Research Council of Canadasupported by the National Natural Science Foundation of China
文摘Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
基金Project supported by the National Natural Science Foundation of China (No. 69673044) the Environmental Protection Bureau of Hangzhou (No. 9901), China
文摘This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phosphorus (TP). Stepwise linear regression of 1997 to 1999 monitoring data at each sampling point of Qiandaohu Lake yielded the multivariate regression models presented in this paper. The concentration of Chla as simulation for the year 2000 by the regression model was similar to the observed value. The suggested mathematical relationship could be used to predict changes in the lakewater environment at any point in time. The results showed that SD, TP and pH were the most significant factors affecting Chla concentration.
文摘目的:多元线性回归模型在保持输入自变量光谱信息和空间特征的同时,通过线性变换获取自变量和因变量的光谱拟合关系,对原输入自变量的光谱信息进行优化,从而获得高空间分辨率和丰富光谱信息的重构数据。方法:利用同期获取的OLI(Operational Land Imager)和PMS(Panchromatic and Multispectral Scanner)多光谱遥感影像,根据最小二乘法构建多元线性回归模型,重构生成具有丰富光谱特征和空间特征的遥感影像,从主客观两个方面评价重构影像的质量。结果:在目视解译(主观)方面,重构影像在一定程度上保留了原OLI影像的光谱特性,提升了原PMS影像的清晰度和分辨性;在量化角度(客观)方面,重构影像的信息量和平均梯度比原OLI对应波段影像的信息量(在部分波段上)和平均梯度要低,但比原PMS影像的信息量和平均梯度要高,可见重构影像的质量介于原PMS影像和OLI影像的质量之间。结论:以青海省门源回族自治县的耕地内不同作物为实例对象,利用最大似然法获取门源县青稞和油菜的空间分布,研究区实测数据验证表明,重构影像对耕地内部青稞与油菜的提取精度高于原PMS和OLI多光谱影像的提取精度。