Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun...Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (...The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (UER) and multivariate linear regression (MLR) were used in this study. Loading equipment parameters such as bucket capacity, machine weight, engine power, boom length, digging depth, and dumping height were considered as variables. The results obtained by models and mean absolute error rate indicate that these models can be applied as the useful tool in determination of overhaul and maintenance cost of loading equipment. The results of this study can be used by the decision-makers for the specific surface mining operations.展开更多
Biodiversity conservation has long been a subject of extreme interest to community ecologists,with a particular focus on exploring the underlying causes of species diversity based on niche and neutral theories.This st...Biodiversity conservation has long been a subject of extreme interest to community ecologists,with a particular focus on exploring the underlying causes of species diversity based on niche and neutral theories.This study aims to identify the potential determinants of species diversity in a deciduous broad-leaved forest in the transitional region from subtropical to temperate climate in China.We collected woody plant data and environmental variables in a fully mapped 25-ha permanent forest plot,partitioned the beta-diversity into local contributions(LCBD)and species contributions(SCBD),and then applied multivariate linear regression analysis to test the effects of biotic and abiotic factors on alpha-diversity,LCBD,and SCBD.We used variation partitioning in combination with environmental variables and spatial distance to determine the contribution of environment-related variations versus spatial variations.Our results showed that the indices of alpha-diversity(i.e.,species abundance and richness)were positively correlated with soil available phosphorus(P)and negatively with slope.For the betadiversity,environment and space together explained nearly half of the variations in community composition.Approximately 60%of the variation of LCBD in the understory layer,40%in the substory layer,and 29%in the canopy layer were jointly explained by topographic,soil and biological variables,with biotic factors playing a dominant role in determining the beta-diversity.Species abundance accounted for a large proportion of the variations in SCBD in each vertical stratum,and niche position(NP)was the ecological trait that significantly affected the variations in SCBD in the substory and canopy layers.Our findings help to gain better understanding on how species diversity in forest ecosystem responds to environmental conditions and how it is influenced by biotic factors and ecological traits of species.展开更多
Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance para...Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance parameters have been discussed. New time and cost prediction models have been depicted. The multivariate linear regression has been used to make the parameters more precise, which are the key factor to affect the prediction near to the reality.展开更多
A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation ...A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation is solved using finite-difference techniques. Theinjection flow of the exhaust hood is treated as a boundary condition of the main flow. Experimentsresults well agree with the solution of theoretical prediction. The model can, therefore, be used todesign this kind of Aaberg hood. Thirdly the important parameters affecting the performance ofAaberg exhaust hood are taken into account. In the mean time the connection of these parameters isdeduced by multivariate linear regression based on the experimental results. The work is usefulwhether in designing this kind of local ventilation Aaberg exhaust hood or in predicting the hood'swork performance.展开更多
This study uses geographically weighted regression to determine the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang Province,China,owing to the influences of spatial attri...This study uses geographically weighted regression to determine the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang Province,China,owing to the influences of spatial attributes on the irrigation efficiency.The sample set of this study comprised 165 agricultural test sites.A multivariate linear regression model and a geographically weighted regression model were established using the effective utilization coefficient of agricultural irrigation water as the dependent variable in addition to a suite of independent variables,including the actual irrigation area,the percentage of farmland using water-saving irrigation,the type of irrigation area,the net water consumption per mu,the water intake method,the terrain slope,and the soil field capacity.Results revealed a positive spatial correlation and noticeable agglomeration features in the effective utilization coefficient of irrigation water in Zhejiang Province.The geographically weighted regression model performed better in terms of fit and prediction accuracy than the multivariate linear regression model.The obtained findings confirm the suitability of the geographically weighted regression model for determining the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang,and offer a new approach on a regional scale.展开更多
Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of...Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.展开更多
Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is th...Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is therefore necessary to use a method that combines both dynamical and statistical predictions of winter precipitation over eastern China (hereinafter called the hybrid approach), in this connection, seasonal real-time prediction models for winter precipitation were established for the six regions. The models use both the preceding observations and synchronous numerical predictions through a multivariate linear regression analysis. To improve the prediction accuracy, the systematic error between the original regression model result and the corresponding observation was corrected. Cross-validation analysis and real-time prediction experiments indicate that the prediction models using the hybrid approach can reliably predict the trend, sign, and interannual variation of regionally averaged winter precipitation in the six regions of concern. Averaged over the six target regions, the anomaly correlation coefficient and the rate with the same sign of anomaly between the cross-validation analysis and observation during 1982-2008 are 0.69 and 78%, respectively. This indicates that the hybrid prediction approach adopted in this study is applicable in operational practice.展开更多
Gushes of Internet public opinions may trigger unexpected incidents that significantly affectsocial security and stability, especially for ones caused by the failure of public policies. Therefore,forecasting this kind...Gushes of Internet public opinions may trigger unexpected incidents that significantly affectsocial security and stability, especially for ones caused by the failure of public policies. Therefore,forecasting this kind of Interact public opinions is of great significance. The duration could be citedas one of the most direct indicators that can reflect the severity of a specific Internet public opinioncase. Based on this background, this paper aims to find the factors that may affect the duration of Internet public opinions, and accordingly proposes a model that can accurately predict the durationbefore the release of public policies. Specifically, an index system including 8 factors by consideringfour dimensions, namely, object, environment, reality (offline), and the network (online), isestablished. In addition, based on the dataset containing 23 typical Internet public opinion casescaused by the failure of public policies, 9 prediction models are gained by applying the multivariatelinear regression model, multivariate nonlinear regression model, and the Cobb-Douglas function.展开更多
Background The transmission dynamics and severity of coronavirus disease 2019(COVID-19)pandemic is different across countries or regions.Differences in governments’policy responses may explain some of these differenc...Background The transmission dynamics and severity of coronavirus disease 2019(COVID-19)pandemic is different across countries or regions.Differences in governments’policy responses may explain some of these differences.We aimed to compare worldwide government responses to the spread of COVID-19,to examine the relationship between response level,response timing and the epidemic trajectory.Methods Free publicly-accessible data collected by the Coronavirus Government Response Tracker(OxCGRT)were used.Nine sub-indicators reflecting government response from 148 countries were collected systematically from January 1 to May 1,2020.The sub-indicators were scored and were aggregated into a common Stringency Index(SI,a value between 0 and 100)that reflects the overall stringency of the government’s response in a daily basis.Group-based trajectory modelling method was used to identify trajectories of SI.Multivariable linear regression models were used to analyse the association between time to reach a high-level SI and time to the peak number of daily new cases.Results Our results identified four trajectories of response in the spread of COVID-19 based on when the response was initiated:before January 13,from January 13 to February 12,from February 12 to March 11,and the last stage—from March 11(the day WHO declared a pandemic of COVID-19)on going.Governments’responses were upgraded with further spread of COVID-19 but varied substantially across countries.After the adjustment of SI level,geographical region and initiation stages,each day earlier to a high SI level(SI>80)from the start of response was associated with 0.44(standard error:0.08,P<0.001,R2=0.65)days earlier to the peak number of daily new case.Also,each day earlier to a high SI level from the date of first reported case was associated with 0.65(standard error:0.08,P<0.001,R2=0.42)days earlier to the peak number of daily new case.Conclusions Early start of a high-level response to COVID-19 is associated with early arrival of the peak number of daily new cases.This may help to reduce the delays in flattening the epidemic curve to the low spread level.展开更多
文摘Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (UER) and multivariate linear regression (MLR) were used in this study. Loading equipment parameters such as bucket capacity, machine weight, engine power, boom length, digging depth, and dumping height were considered as variables. The results obtained by models and mean absolute error rate indicate that these models can be applied as the useful tool in determination of overhaul and maintenance cost of loading equipment. The results of this study can be used by the decision-makers for the specific surface mining operations.
基金supported by the National Natural Science Foundation of China(Nos.31971491,31770517)the Meituan Qingshan Special Commonweal Fund of China Environmental Protection Foundation(CEPFQS202169-20)。
文摘Biodiversity conservation has long been a subject of extreme interest to community ecologists,with a particular focus on exploring the underlying causes of species diversity based on niche and neutral theories.This study aims to identify the potential determinants of species diversity in a deciduous broad-leaved forest in the transitional region from subtropical to temperate climate in China.We collected woody plant data and environmental variables in a fully mapped 25-ha permanent forest plot,partitioned the beta-diversity into local contributions(LCBD)and species contributions(SCBD),and then applied multivariate linear regression analysis to test the effects of biotic and abiotic factors on alpha-diversity,LCBD,and SCBD.We used variation partitioning in combination with environmental variables and spatial distance to determine the contribution of environment-related variations versus spatial variations.Our results showed that the indices of alpha-diversity(i.e.,species abundance and richness)were positively correlated with soil available phosphorus(P)and negatively with slope.For the betadiversity,environment and space together explained nearly half of the variations in community composition.Approximately 60%of the variation of LCBD in the understory layer,40%in the substory layer,and 29%in the canopy layer were jointly explained by topographic,soil and biological variables,with biotic factors playing a dominant role in determining the beta-diversity.Species abundance accounted for a large proportion of the variations in SCBD in each vertical stratum,and niche position(NP)was the ecological trait that significantly affected the variations in SCBD in the substory and canopy layers.Our findings help to gain better understanding on how species diversity in forest ecosystem responds to environmental conditions and how it is influenced by biotic factors and ecological traits of species.
文摘Making use of microsoft visual studio. net platform, the assistant decision-making system of tunnel boring machine in tunnelling has been built to predict the time and cost. Computation methods of the performance parameters have been discussed. New time and cost prediction models have been depicted. The multivariate linear regression has been used to make the parameters more precise, which are the key factor to affect the prediction near to the reality.
文摘A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation is solved using finite-difference techniques. Theinjection flow of the exhaust hood is treated as a boundary condition of the main flow. Experimentsresults well agree with the solution of theoretical prediction. The model can, therefore, be used todesign this kind of Aaberg hood. Thirdly the important parameters affecting the performance ofAaberg exhaust hood are taken into account. In the mean time the connection of these parameters isdeduced by multivariate linear regression based on the experimental results. The work is usefulwhether in designing this kind of local ventilation Aaberg exhaust hood or in predicting the hood'swork performance.
基金This study was supported by the National Key R&D Program of China(Nos.2016YFC0401005 and 2016YFA0601703)the National Natural Science Foundation of China(Grant Nos.42075191,92047203 and 91847301)Nanjing Hydraulic Research Institute Fund(No.Y520009).We thank Chinese Academy of Meteorological Sciences for providing monitoring data of the study area.
文摘This study uses geographically weighted regression to determine the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang Province,China,owing to the influences of spatial attributes on the irrigation efficiency.The sample set of this study comprised 165 agricultural test sites.A multivariate linear regression model and a geographically weighted regression model were established using the effective utilization coefficient of agricultural irrigation water as the dependent variable in addition to a suite of independent variables,including the actual irrigation area,the percentage of farmland using water-saving irrigation,the type of irrigation area,the net water consumption per mu,the water intake method,the terrain slope,and the soil field capacity.Results revealed a positive spatial correlation and noticeable agglomeration features in the effective utilization coefficient of irrigation water in Zhejiang Province.The geographically weighted regression model performed better in terms of fit and prediction accuracy than the multivariate linear regression model.The obtained findings confirm the suitability of the geographically weighted regression model for determining the spatial distribution of the effective utilization coefficient of irrigation water in Zhejiang,and offer a new approach on a regional scale.
基金Supported by the Outstanding Youth Research Project of Anhui Colleges(Grant No.2022AH030156)。
文摘Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.
基金Supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX2-YW-Q03-3)National Basic Research Program of China(2009CB421406)+1 种基金Special Public Welfare Research Fund for Meteorological Profession of China Mete-orological Administration(GYHY200906018)National Natural Science Foundation of China(40875048)
文摘Correlation analysis revealed that winter precipitation in six regions of eastern China is closely related not only to preceding climate signals but also to synchronous atmospheric general circulation fields. It is therefore necessary to use a method that combines both dynamical and statistical predictions of winter precipitation over eastern China (hereinafter called the hybrid approach), in this connection, seasonal real-time prediction models for winter precipitation were established for the six regions. The models use both the preceding observations and synchronous numerical predictions through a multivariate linear regression analysis. To improve the prediction accuracy, the systematic error between the original regression model result and the corresponding observation was corrected. Cross-validation analysis and real-time prediction experiments indicate that the prediction models using the hybrid approach can reliably predict the trend, sign, and interannual variation of regionally averaged winter precipitation in the six regions of concern. Averaged over the six target regions, the anomaly correlation coefficient and the rate with the same sign of anomaly between the cross-validation analysis and observation during 1982-2008 are 0.69 and 78%, respectively. This indicates that the hybrid prediction approach adopted in this study is applicable in operational practice.
文摘Gushes of Internet public opinions may trigger unexpected incidents that significantly affectsocial security and stability, especially for ones caused by the failure of public policies. Therefore,forecasting this kind of Interact public opinions is of great significance. The duration could be citedas one of the most direct indicators that can reflect the severity of a specific Internet public opinioncase. Based on this background, this paper aims to find the factors that may affect the duration of Internet public opinions, and accordingly proposes a model that can accurately predict the durationbefore the release of public policies. Specifically, an index system including 8 factors by consideringfour dimensions, namely, object, environment, reality (offline), and the network (online), isestablished. In addition, based on the dataset containing 23 typical Internet public opinion casescaused by the failure of public policies, 9 prediction models are gained by applying the multivariatelinear regression model, multivariate nonlinear regression model, and the Cobb-Douglas function.
文摘Background The transmission dynamics and severity of coronavirus disease 2019(COVID-19)pandemic is different across countries or regions.Differences in governments’policy responses may explain some of these differences.We aimed to compare worldwide government responses to the spread of COVID-19,to examine the relationship between response level,response timing and the epidemic trajectory.Methods Free publicly-accessible data collected by the Coronavirus Government Response Tracker(OxCGRT)were used.Nine sub-indicators reflecting government response from 148 countries were collected systematically from January 1 to May 1,2020.The sub-indicators were scored and were aggregated into a common Stringency Index(SI,a value between 0 and 100)that reflects the overall stringency of the government’s response in a daily basis.Group-based trajectory modelling method was used to identify trajectories of SI.Multivariable linear regression models were used to analyse the association between time to reach a high-level SI and time to the peak number of daily new cases.Results Our results identified four trajectories of response in the spread of COVID-19 based on when the response was initiated:before January 13,from January 13 to February 12,from February 12 to March 11,and the last stage—from March 11(the day WHO declared a pandemic of COVID-19)on going.Governments’responses were upgraded with further spread of COVID-19 but varied substantially across countries.After the adjustment of SI level,geographical region and initiation stages,each day earlier to a high SI level(SI>80)from the start of response was associated with 0.44(standard error:0.08,P<0.001,R2=0.65)days earlier to the peak number of daily new case.Also,each day earlier to a high SI level from the date of first reported case was associated with 0.65(standard error:0.08,P<0.001,R2=0.42)days earlier to the peak number of daily new case.Conclusions Early start of a high-level response to COVID-19 is associated with early arrival of the peak number of daily new cases.This may help to reduce the delays in flattening the epidemic curve to the low spread level.