This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial prob...This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial probit(MNP)and multivariate probit(MVP).Data were collected from 382 farmers sampled from four districts in KhyberPakhtunkhwa(KP)province of Pakistan via a multistage sampling technique.This study utilizes the MNP model,considering the assumption of Independence of Irrelevant Alternatives(IIA)and incorporating correlated error terms.The objective is to understand farmers'behavior in risky situations and determine if there is heterogeneity.Results are compared with the MVP model to assess robustness and gain deeper understanding of farmers'decisionmaking processes.The research findings reveal that our results are robust,and farmers behave homogeneously in various RMS scenarios.Farmers adopt RMS individually or in combination to mitigate the adverse effects of natural calamities on their livelihood.The risk-averse farmers,who perceive weather-related risks as a threat,access credits and information,and have farms close to a river are more likely to adopt RMS,irrespective of the format of the strategies available.Moreover,the predicted probabilities and correlation of the RMS and RM categories have strengthened our model estimation.These findings provide insights into the behavior of farmers in adopting RMS which are helpful for policymakers and stakeholders in developing strategies to mitigate the impacts of natural calamities on farmers.展开更多
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar re...In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
BACKGROUNDSpontaneous bacterial peritonitis (SBP) is a detrimental infection of the asciticfluid in liver cirrhosis patients, with high mortality and morbidity. Earlydiagnosis and timely antibiotic administration have...BACKGROUNDSpontaneous bacterial peritonitis (SBP) is a detrimental infection of the asciticfluid in liver cirrhosis patients, with high mortality and morbidity. Earlydiagnosis and timely antibiotic administration have successfully decreased themortality rate to 20%-25%. However, many patients cannot be diagnosed in theearly stages due to the absence of classical SBP symptoms. Early diagnosis ofasymptomatic SBP remains a great challenge in the clinic.AIMTo establish a multivariate predictive model for early diagnosis of asymptomaticSBP using positive microbial cultures from liver cirrhosis patients with ascites.METHODSA total of 98 asymptomatic SBP patients and 98 ascites liver cirrhosis patients withnegative microbial cultures were included in the case and control groups,respectively. Multiple linear stepwise regression analysis was performed toidentify potential indicators for asymptomatic SBP diagnosis. The diagnosticperformance of the model was estimated using the receiver operatingcharacteristic curve.RESULTSPatients in the case group were more likely to have advanced disease stages,cirrhosis related-complications, worsened hematology and ascites, and higher mortality. Based on multivariate analysis, the predictive model was as follows: y (P) = 0.018 + 0.312 × MELD (model of end-stage liver disease) + 0.263 × PMN(ascites polymorphonuclear) + 0.184 × N (blood neutrophil percentage) + 0.233 ×HCC (hepatocellular carcinoma) + 0.189 × renal dysfunction. The area under thecurve value of the established model was 0.872, revealing its high diagnosticpotential. The diagnostic sensitivity was 73.5% (72/98), the specificity was 86.7%(85/98), and the diagnostic efficacy was 80.1%.CONCLUSIONOur predictive model is based on the MELD score, polymorphonuclear cells,blood N, hepatocellular carcinoma, and renal dysfunction. This model mayimprove the early diagnosis of asymptomatic SBP.展开更多
In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution ...In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution of permafrost were studied to under- stand the dislribution patterns of permafrost in Wenquan on the Qinghai-Tibet Plateau. Cluster and correlation analysis were per- formed based on 30 m Global Digital Elevation Model (GDEM) data and field data obtained using geophysical exploration and borehole drilling methods. A Multivariate Adaptive Regression Spline model (MARS) was developed to simulate permafrost spa- tial distribution over the studied area. A validation was followed by comparing to 201 geophysical exploration sites, as well as by comparing to two other models, i.e., a binary logistic regression model and the Mean Annual Ground Temperature model (IVlAGT). The MARS model provides a better simulation than the other two models. Besides the control effect of elevation on permafrost distribution, the MARS model also takes into account the impact of direct solar radiation on permafrost distribution.展开更多
In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error vari...In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error variance, response variables and explanatory variables are derived, and the results are compared with those of case- deletion. Two examples are analyzed for illustration.展开更多
The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the ...The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the GJS estimator and Kernel estimation.展开更多
For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators ...For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility.展开更多
The local influence analysis is an important problem in statistical inference and some models have been discussed in many literatures This paper deals with the problem of assessing local influences in a multivariate t...The local influence analysis is an important problem in statistical inference and some models have been discussed in many literatures This paper deals with the problem of assessing local influences in a multivariate t-model with Rao's simple struc-ture(RSS). Based on Cook's likelihood displacement, the effects of some minor perturbation on the statistical inference is assessed. As an application, a common covariance-weighted perturbation is thoroughly discussed.展开更多
Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analys...Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.展开更多
Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component...Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sam-ple variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to charac-terize and predict earthquakes in North China (30~42N, 108~125E) and better prediction results are obtained.展开更多
In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Ve...In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Vec( (k))is less than theMSE of LS estimate β ̄* of the regression coefficient β= Vec(B) by choosing the pa-rameter k. Admissibility , numerical stability and relative efficiency of (k)are proved. The method of determining k value for practical use is also suggested展开更多
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi...Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.展开更多
The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlatio...The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series.展开更多
Using the fact that a multivariate random sample of n observations also generates n nearest neighbour distance (NND) univariate observations and from these NND observations, a set of n auxiliary observations can be ob...Using the fact that a multivariate random sample of n observations also generates n nearest neighbour distance (NND) univariate observations and from these NND observations, a set of n auxiliary observations can be obtained and with these auxiliary observations when combined with the original multivariate observations of the random sample, a class of pseudodistance?Dh?is allowed to be used and inference methods can be developed using this class of pseudodistances. The Dh?estimators obtained from this class can achieve high efficiencies and have robustness properties. Model testing also can be handled in a unified way by means of goodness-of-fit tests statistics derived from this class which have an asymptotic normal distribution. These properties make the developed inference methods relatively simple to implement and appear to be suitable for analyzing multivariate data which are often encountered in applications.展开更多
Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activit...Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays.展开更多
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me...In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared.展开更多
At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positiv...At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positive and negative, and is distributed in a bipolar distribution of “long life in rich countries and short life in poor countries”. This paper analyzes the factors affecting the life grade by using the ordered multivariate discrete selection model and combined with the average life expectancy data of countries all over the world in 2017. The test results show that: 1) The growth of per capita GDP, elderly dependency ratio and the proportion of people using at least basic drinking water services can effectively improve the level of life expectancy;2) The birth rate has an inhibitory effect on the average life expectancy;3) Through model comparison, probit model is more suitable for the analysis of this kind of problems than logit model, and the properties of the obtained model are better.展开更多
It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-D...It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-DC-MSV model were used to calculate the time-varying hedging ratios and compare the hedging performance. The Markov chain Monte Carlo( MCMC) method was used to estimate the parameters. The results showed that,there were obviously two economic states in Chinese financial market. Two models all did well in hedging,but the performance of MRS-DCMSV model was better. It could reduce risk by nearly 90%. Thus,in the hedging period,changing states is a factor that cannot be neglected.展开更多
文摘This study investigates the factors that impact farmers'adoption of risk management strategies(RMS)in Pakistan during times of uncertainty.The study examines farmers'adoption of RMS using both multinomial probit(MNP)and multivariate probit(MVP).Data were collected from 382 farmers sampled from four districts in KhyberPakhtunkhwa(KP)province of Pakistan via a multistage sampling technique.This study utilizes the MNP model,considering the assumption of Independence of Irrelevant Alternatives(IIA)and incorporating correlated error terms.The objective is to understand farmers'behavior in risky situations and determine if there is heterogeneity.Results are compared with the MVP model to assess robustness and gain deeper understanding of farmers'decisionmaking processes.The research findings reveal that our results are robust,and farmers behave homogeneously in various RMS scenarios.Farmers adopt RMS individually or in combination to mitigate the adverse effects of natural calamities on their livelihood.The risk-averse farmers,who perceive weather-related risks as a threat,access credits and information,and have farms close to a river are more likely to adopt RMS,irrespective of the format of the strategies available.Moreover,the predicted probabilities and correlation of the RMS and RM categories have strengthened our model estimation.These findings provide insights into the behavior of farmers in adopting RMS which are helpful for policymakers and stakeholders in developing strategies to mitigate the impacts of natural calamities on farmers.
基金supported by the Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS),UTS under grant numbers 321740.2232335,323930,and 321740.2232357
文摘In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金Supported by the Digestive Medical Coordinated Development Center of Beijing Municipal Administration,No.XXZ0403.
文摘BACKGROUNDSpontaneous bacterial peritonitis (SBP) is a detrimental infection of the asciticfluid in liver cirrhosis patients, with high mortality and morbidity. Earlydiagnosis and timely antibiotic administration have successfully decreased themortality rate to 20%-25%. However, many patients cannot be diagnosed in theearly stages due to the absence of classical SBP symptoms. Early diagnosis ofasymptomatic SBP remains a great challenge in the clinic.AIMTo establish a multivariate predictive model for early diagnosis of asymptomaticSBP using positive microbial cultures from liver cirrhosis patients with ascites.METHODSA total of 98 asymptomatic SBP patients and 98 ascites liver cirrhosis patients withnegative microbial cultures were included in the case and control groups,respectively. Multiple linear stepwise regression analysis was performed toidentify potential indicators for asymptomatic SBP diagnosis. The diagnosticperformance of the model was estimated using the receiver operatingcharacteristic curve.RESULTSPatients in the case group were more likely to have advanced disease stages,cirrhosis related-complications, worsened hematology and ascites, and higher mortality. Based on multivariate analysis, the predictive model was as follows: y (P) = 0.018 + 0.312 × MELD (model of end-stage liver disease) + 0.263 × PMN(ascites polymorphonuclear) + 0.184 × N (blood neutrophil percentage) + 0.233 ×HCC (hepatocellular carcinoma) + 0.189 × renal dysfunction. The area under thecurve value of the established model was 0.872, revealing its high diagnosticpotential. The diagnostic sensitivity was 73.5% (72/98), the specificity was 86.7%(85/98), and the diagnostic efficacy was 80.1%.CONCLUSIONOur predictive model is based on the MELD score, polymorphonuclear cells,blood N, hepatocellular carcinoma, and renal dysfunction. This model mayimprove the early diagnosis of asymptomatic SBP.
基金supported financially by the Special Basic Research Program of China(Grant No.2008FY110200)partially by Open Programme of State Key Laboratory(No.SKLFSE201009)
文摘In high mountainous areas, the development and distribution of alpine permafrost is greatly affected by macro- and mi- cro-topographic factors. The effects of latitude, altitude, slope, and aspect on the distribution of permafrost were studied to under- stand the dislribution patterns of permafrost in Wenquan on the Qinghai-Tibet Plateau. Cluster and correlation analysis were per- formed based on 30 m Global Digital Elevation Model (GDEM) data and field data obtained using geophysical exploration and borehole drilling methods. A Multivariate Adaptive Regression Spline model (MARS) was developed to simulate permafrost spa- tial distribution over the studied area. A validation was followed by comparing to 201 geophysical exploration sites, as well as by comparing to two other models, i.e., a binary logistic regression model and the Mean Annual Ground Temperature model (IVlAGT). The MARS model provides a better simulation than the other two models. Besides the control effect of elevation on permafrost distribution, the MARS model also takes into account the impact of direct solar radiation on permafrost distribution.
文摘In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error variance, response variables and explanatory variables are derived, and the results are compared with those of case- deletion. Two examples are analyzed for illustration.
基金Supported by the Anhui Provincial Natural Science Foundation(11040606M04) Supported by the National Natural Science Foundation of China(10871001,10971097)
文摘The paper considers a multivariate partially linear model under independent errors,and investigates the asymptotic bias and variance-covariance for parametric component βand nonparametric component F(·)by the GJS estimator and Kernel estimation.
文摘For multivariate linear model Y=XΘ+ε, ~N(0, σ 2ΣV), this paper is concerned with the admissibility of linear estimators of estimable function SXΘ in the class of all estimators. All admissible linear estimators of SXΘ are given under each of four definitions of admissibility.
文摘The local influence analysis is an important problem in statistical inference and some models have been discussed in many literatures This paper deals with the problem of assessing local influences in a multivariate t-model with Rao's simple struc-ture(RSS). Based on Cook's likelihood displacement, the effects of some minor perturbation on the statistical inference is assessed. As an application, a common covariance-weighted perturbation is thoroughly discussed.
文摘Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study.
文摘Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sam-ple variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to charac-terize and predict earthquakes in North China (30~42N, 108~125E) and better prediction results are obtained.
文摘In this paper, compression LS estimate (k) of the regression coefficient B isconsidered when the design matrix present ill-condition in multivariate linear model.The MSE (mean square error)of the estimate(k)=Vec( (k))is less than theMSE of LS estimate β ̄* of the regression coefficient β= Vec(B) by choosing the pa-rameter k. Admissibility , numerical stability and relative efficiency of (k)are proved. The method of determining k value for practical use is also suggested
基金supported by the Natural Sciences and Engineering Research Council of Canadathe National Natural Science Foundation of China+2 种基金the Doctorial Fund of Education Ministry of Chinasupported by the Natural Sciences and Engineering Research Council of Canadasupported by the National Natural Science Foundation of China
文摘Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.
文摘The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series.
文摘Using the fact that a multivariate random sample of n observations also generates n nearest neighbour distance (NND) univariate observations and from these NND observations, a set of n auxiliary observations can be obtained and with these auxiliary observations when combined with the original multivariate observations of the random sample, a class of pseudodistance?Dh?is allowed to be used and inference methods can be developed using this class of pseudodistances. The Dh?estimators obtained from this class can achieve high efficiencies and have robustness properties. Model testing also can be handled in a unified way by means of goodness-of-fit tests statistics derived from this class which have an asymptotic normal distribution. These properties make the developed inference methods relatively simple to implement and appear to be suitable for analyzing multivariate data which are often encountered in applications.
文摘Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities. The multivariate models constructed were applied to the new structures and indicated numbers 19 and 20 as the most prominent for syntheses and biological assays.
文摘In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared.
文摘At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positive and negative, and is distributed in a bipolar distribution of “long life in rich countries and short life in poor countries”. This paper analyzes the factors affecting the life grade by using the ordered multivariate discrete selection model and combined with the average life expectancy data of countries all over the world in 2017. The test results show that: 1) The growth of per capita GDP, elderly dependency ratio and the proportion of people using at least basic drinking water services can effectively improve the level of life expectancy;2) The birth rate has an inhibitory effect on the average life expectancy;3) Through model comparison, probit model is more suitable for the analysis of this kind of problems than logit model, and the properties of the obtained model are better.
基金National Natural Science Foundation of China(No.71401144)
文摘It is important to consider the changing states in hedging.The Markov regime-switching dynamic correlation multivariate stochastic volatility( MRS-DC-MSV) model was proposed to solve this issue. DC-MSV model and MRS-DC-MSV model were used to calculate the time-varying hedging ratios and compare the hedging performance. The Markov chain Monte Carlo( MCMC) method was used to estimate the parameters. The results showed that,there were obviously two economic states in Chinese financial market. Two models all did well in hedging,but the performance of MRS-DCMSV model was better. It could reduce risk by nearly 90%. Thus,in the hedging period,changing states is a factor that cannot be neglected.