[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shan...[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.展开更多
In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)da...In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.展开更多
The impact of structural stiffness on optical axis deviation poses a significant challenge in the design of equatorial telescope structures.A comprehensive analysis during the design process can reduce the reliance of...The impact of structural stiffness on optical axis deviation poses a significant challenge in the design of equatorial telescope structures.A comprehensive analysis during the design process can reduce the reliance of a telescope on advanced control technologies,thereby improving its economic feasibility.Although full-system finite element analyses are reliable,they are encumbered by significant time requirements and limitations in covering all possible telescope orientations.Therefore,we propose an efficient and comprehensive analytical method to evaluate the optical axis deviation of equatorial telescopes across a full range of angles.To address the challenge of ensuring that the analysis covers all possible positions of an equatorial telescope,based on a model from SiTian project,we analyze the optical axis deviations caused by the fork arm at 25 different angles and then use fitting methods to obtain results for all angles.Based on the analysis results of the optical axis deviation caused by the stiffness of the optical tube in the horizontal position,we derive the results for the tube at any position using geometric relationships.Finally,we calculate the coupling factors and combine these impacts.Furthermore,we identify six discrete feature points to reflect possible telescope orientations and conduct comprehensive finite element analyses.The results are in alignment with those acquired through a comprehensive computational approach.展开更多
Sanhuang chicken is a popular native breed in China and well-known for delicious flavour.Spices could enhance the chicken meat flavour and work well in preservation.Chinese 5-spice blend(CS)and garam masala(GM)are rou...Sanhuang chicken is a popular native breed in China and well-known for delicious flavour.Spices could enhance the chicken meat flavour and work well in preservation.Chinese 5-spice blend(CS)and garam masala(GM)are routinely using spices in China and Pakistan,respectively.The flavour profiles of Sanhuang chicken breast(CB)and its blends with CS and GM were obtained by electronic nose(E-nose),solid-phase microextraction gas chromatography-mass spectrometry(SPME GC-MS)and GC-ion mobility spectrometry(GC-IMS).Principal component analysis(PCA)efficiently discriminated the aroma profiles of three chicken formulations.The GC-chromatographs revealed the significant aroma alterations of chicken breast meat after marination with spices.Aldehydes were the major contributors of chicken aroma,while most of the aromatic hydrocarbons were generated by spices.Almost all chicken key-compounds produced by oxidation reaction were either reduced or eliminated by marination,showing the antioxidation capacity of spices leading to meat preservation.GC-IMS is not only a rapid and comprehensive detection method,but also proved to be more sensitive than GC-MS.The substantial role of both traditional spices in enhancing flavour quality of chicken meat,and their exposure as functional ingredients in Chinese and Pakistan cuisines could lead to the cross-cultural meat trade opportunities.展开更多
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a...Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geo...In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.展开更多
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more acc...Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
OBJECTIVE: To estimate the operative mortality in patients with malignant obstructive jaundice. METHODS: Twelve risk factors were analyzed using multivariate discriminant analysis in 90 patients who had been operated ...OBJECTIVE: To estimate the operative mortality in patients with malignant obstructive jaundice. METHODS: Twelve risk factors were analyzed using multivariate discriminant analysis in 90 patients who had been operated on. RESULTS: Operative mortality was significantly related to the following factors: age, duration of jaundice, packed RBC volume, white blood cell count and concentration of blood urine nitrogen; it was not significantly related to diseases and types of operation. The following formula was obtained: packed RBC volume×0.09954-age×0. 04018-blood urine nitrogen×0. 23693-duration of jaundice× 2. 07388-WBC count×0. 21118+5. 26593. With this formula, an operative mortality of 77. 8% was predicted. CONCLUSION: With a positive value from the formula, the patient should be operated on; otherwise non-operative treatment is advocated.展开更多
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl...This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.展开更多
Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental...Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.展开更多
A recent method for assessing the local influence is introduced by Cook(1986), in which the normal curvature of the influence graph based on the likelihood displacement is used to monitor the influence of small pertur...A recent method for assessing the local influence is introduced by Cook(1986), in which the normal curvature of the influence graph based on the likelihood displacement is used to monitor the influence of small perturbation. Since then this method has been applied to various kind of models. However, the local influence in multivariate analysis is still an unexplored area because the influence for many statistics in multivariate analysis is not convenient to handle based on the Cook's likelihood displacement. In this paper, we suggest a method with a slight modification in Cook's approach to assess the local influence of small perturbation on a certain statistic. The local influence of the perturbation on eigenvalue and eigenvector of variance-covariance matrix in theoretical and sample version is assessed, some results for the other statistics in multivariate analysis such as generalized variance, canonical correlations are studied. Finally, two examples are analysed for illustration.展开更多
AIM To assess the relationship between gastric acid output (GAO) and both pattern of gastroesophageal reflux (GER) and esophageal lesions, and to evaluate the role of GAO and other potential pathogenetic factors in t...AIM To assess the relationship between gastric acid output (GAO) and both pattern of gastroesophageal reflux (GER) and esophageal lesions, and to evaluate the role of GAO and other potential pathogenetic factors in the development of esophagitis. METHODS Gastric acid secretory testing and 24 h intraesophageal pH monitoring were performed in 31 patients with esophagitis and concomitant duodenal ulcer (E+DU) and compared with those of 72 patients with esophagitis (E) alone. RESULTS The GAO in patients with E+DU was significantly higher than in patients with E ( P <0 05). There was no significant difference between the two groups of patients as to endoscopicl findings and parameters of GER ( P >0 05). A multiple regression analysis with stepwise deletion showed that the pre sence of hiatal hernia (HH), GER in upright position and age appeared to correlate significantly with the presence of esophagitis. CONCLUSIONS No parallel relationship between GAO and severity of GER or esophageal lesions exists in patients with E+DU, and that GAO is not a major pathogenetic factor in GER disease.展开更多
Fatty acids(FAs) provide energy and also can be used to trace trophic relationships among organisms.Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months.We examined fatty acid...Fatty acids(FAs) provide energy and also can be used to trace trophic relationships among organisms.Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months.We examined fatty acid profiles in aestivated and non-aestivated A.japonicus using multivariate analyses(PERMANOVA,MDS,ANOSIM,and SIMPER).The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly.The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers.Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation,and long chain FAs such as eicosapentaenoic(EPA) and docosahexaenoic acid(DHA) that produced from intestinal degradation,are digested during deep aestivation.Specific changes in the fatty acid composition of A.japonicus during aestivation needs more detailed study in the future.展开更多
This study evaluated the impact of chronicity (onset of injury to admission in-terval) on three domains of functional outcomes for a large group of traumatic brain injured (TBI) survivors. Subjects included 528 TBI ad...This study evaluated the impact of chronicity (onset of injury to admission in-terval) on three domains of functional outcomes for a large group of traumatic brain injured (TBI) survivors. Subjects included 528 TBI adults who were treated in post-hospital residential rehabilitation centers. Subjects were assigned to one of three chronicity groups: 1) Early Interval (EI), 2.00 - 8.00 months n = 245, 2) Mid Interval (MI), 8.01 - 24.00 months n = 129, and (3) Late Interval (LI), 24.01 months and greater n = 154. Functional status was assessed with the MPAI-4. RM MANCOVA was applied to evaluate differences among groups from admission to discharge. Rasch analysis demonstrated satisfactory construct validity and internal consistency (Person reliability = 0.90 - 0.94, Item reliability = 0.99) for the admission and discharge MPAI-4s. Controlling for LOS and age, the RM MANCOVA revealed that each chronicity group showed significant improvement in MPAI-4 abilities, adjustment, and participation indices from admission to discharge (p < 0.001). Improvement observed from admission to discharge was the greatest among the EI group (p < 0.001). This study demonstrated the utility of multivariate statistical approaches for understanding the complexities of TBI treatment outcomes. As measured across three domains of functioning, rehabilitation was effective in reducing disability for participants in each chronicity group. Of the three groups, EI participants presented as the most disabled at admission but also made the greatest gains when assessed at discharge.展开更多
Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and ...Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and to interpret a large and complex water quality data sets collected from the Songhua River Basin. The data sets, which contained 14 parameters, were generated during the 7-year (1998-2004) monitoring program at 14 different sites along the rivers. Three significant sampling locations (less polluted sites, moderately polluted sites and highly polluted sites) were detected by CA method, and five latent factors (organic, inor-ganic, petrochemical, physiochemical, and heavy metals) were identified by PCA and FA methods. The re-sults of DA showed only five parameters (temperature, pH, dissolved oxygen, ammonia nitrogen, and nitrate nitrogen) and eight parameters (temperature, pH, dissolved oxygen, biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen, volatile phenols and total arsenic) were necessarily in temporal and spatial varia-tions analysis, respectively. Furthermore, this study revealed the major causes of water quality deterioration were related to inflow of effluent from domestic and industrial wastewater disposal.展开更多
A novel multivariate similarity clustering analysis (MSCA) approach was used to estimate a biogeographical division scheme for the global terrestrial fauna and was compared against other widely used clustering algorit...A novel multivariate similarity clustering analysis (MSCA) approach was used to estimate a biogeographical division scheme for the global terrestrial fauna and was compared against other widely used clustering algorithms. The faunal dataset included almost all terrestrial and freshwater fauna, a total of 4631 families, 141,814 genera, and 1,334,834 species. Our findings demonstrated that suitable results were only obtained with the MSCA method, which was associated with distinct hierarchies, reasonable structuring, and furthermore, conformed to biogeographical criteria. A total of seven kingdoms and 20 sub-kingdoms were identified. We discovered that the clustering results for the higher and lower animals did not differ significantly, leading us to consider that the analysis result is convincing as the first zoogeographical division scheme for global all terrestrial animals.展开更多
基金Supported by National Natural Science Foundation of China(41001341)Natural Science Foundation of Guangdong Province(9152800001000007)+1 种基金Open Fund ofState Key Laboratory of Subtropical Building Science(2011KB12)Basic Scientific Research Expenses Project of Central Universities(2012ZM0082)~~
文摘[Objective] The plankton and macrobenthos samples in municipal polluted river were analyzed by different methods, so as to explore the method suitable for biological data analysis in heavy polluted area. [Method] Shannon-Wiener diversity index, cluster analysis of multivariate statistical analysis and MDS (Non-matric Multi- dimentional Scaling)analysis were used to analyze biological data of phytoplankton, zooplankton and Zoobenthos collected from the representative municipal polluted river in Pearl River Delta. The sediment samples were also collected to determine. Pb, Cd, Hg, Cr, As, Cu, Ni, Zn, as well as CODe, and NH3-N of porewater. Hakanson potential ecological risk index method was used to evaluate the ecological risk. [Re- suit] Shannon-Wiener diversity index analysis results can not effectively reflect the difference of pollution status of various stations in heavy polluted area; despite the presence of some problems, multivariate analysis method is superior to the Shannon-Wiener diversity index method in biological monitoring of heavy polluted river in the city. [Conclusion] The paper provided theoretical basis for biological data analysis in heavy polluted area.
基金supported by the Culture,Sports,and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2024(Project Name:Development of Distribution and Management Platform Technology and Human Resource Development for Blockchain-Based SW Copyright Protection,Project Number:RS-2023-00228867,Contribution Rate:100%)and also supported by the Soonchunhyang University Research Fund.
文摘In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.
文摘The impact of structural stiffness on optical axis deviation poses a significant challenge in the design of equatorial telescope structures.A comprehensive analysis during the design process can reduce the reliance of a telescope on advanced control technologies,thereby improving its economic feasibility.Although full-system finite element analyses are reliable,they are encumbered by significant time requirements and limitations in covering all possible telescope orientations.Therefore,we propose an efficient and comprehensive analytical method to evaluate the optical axis deviation of equatorial telescopes across a full range of angles.To address the challenge of ensuring that the analysis covers all possible positions of an equatorial telescope,based on a model from SiTian project,we analyze the optical axis deviations caused by the fork arm at 25 different angles and then use fitting methods to obtain results for all angles.Based on the analysis results of the optical axis deviation caused by the stiffness of the optical tube in the horizontal position,we derive the results for the tube at any position using geometric relationships.Finally,we calculate the coupling factors and combine these impacts.Furthermore,we identify six discrete feature points to reflect possible telescope orientations and conduct comprehensive finite element analyses.The results are in alignment with those acquired through a comprehensive computational approach.
基金funded by National Natural Science Foundation of China (Grant No. 32001824, 31972198, 31901816, 31901813, 32001827)
文摘Sanhuang chicken is a popular native breed in China and well-known for delicious flavour.Spices could enhance the chicken meat flavour and work well in preservation.Chinese 5-spice blend(CS)and garam masala(GM)are routinely using spices in China and Pakistan,respectively.The flavour profiles of Sanhuang chicken breast(CB)and its blends with CS and GM were obtained by electronic nose(E-nose),solid-phase microextraction gas chromatography-mass spectrometry(SPME GC-MS)and GC-ion mobility spectrometry(GC-IMS).Principal component analysis(PCA)efficiently discriminated the aroma profiles of three chicken formulations.The GC-chromatographs revealed the significant aroma alterations of chicken breast meat after marination with spices.Aldehydes were the major contributors of chicken aroma,while most of the aromatic hydrocarbons were generated by spices.Almost all chicken key-compounds produced by oxidation reaction were either reduced or eliminated by marination,showing the antioxidation capacity of spices leading to meat preservation.GC-IMS is not only a rapid and comprehensive detection method,but also proved to be more sensitive than GC-MS.The substantial role of both traditional spices in enhancing flavour quality of chicken meat,and their exposure as functional ingredients in Chinese and Pakistan cuisines could lead to the cross-cultural meat trade opportunities.
文摘Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
文摘In this study,the analytical data set of 26 groundwater samples from the alluvial aquifer of Boumerzoug-E1 khroub valley has been processed simultaneously with Multivariate analysis,geostatistical modeling,WQI,and geochemical modeling.Cluster analysis identified three main water types based on the major ion contents,where mineralization increased from group 1 to group 3.These groups were confirmed by FA/PCA,which demonstrated that groundwater quality is influenced by geochemical processes(water-rock interaction)and human practice(irrigation).The exponential semivariogram model WQI.Groundwater chemistry has a strong spatial structure for Mg,Na,Cl,and NO3,and a moderate spatial structure for EC,Ca,K,HCO3,and SO4.Water quality maps generated using ordinary Kriging are consistent with the HCA and PCA results.All water groups are supersaturated with respect to carbonate minerals,and dissolution of kaolinite and Ca-smectite is one of the processes responsible for hydrochemical evolution in the area.
基金supported by grants from the National Program on the Development of Basic Research (2011CB100100)the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundations (31391632, 31200943, 31171187, and 91535103)+3 种基金the National High-tech R&D Program (863 Program) (2014AA10A601-5)the Natural Science Foundations of Jiangsu Province (BK20150010)the Natural Science Foundation of the Jiangsu Higher Education Institutions (14KJA210005)the Innovative Research Team of Universities in Jiangsu Province (KYLX_1352)
文摘Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
文摘OBJECTIVE: To estimate the operative mortality in patients with malignant obstructive jaundice. METHODS: Twelve risk factors were analyzed using multivariate discriminant analysis in 90 patients who had been operated on. RESULTS: Operative mortality was significantly related to the following factors: age, duration of jaundice, packed RBC volume, white blood cell count and concentration of blood urine nitrogen; it was not significantly related to diseases and types of operation. The following formula was obtained: packed RBC volume×0.09954-age×0. 04018-blood urine nitrogen×0. 23693-duration of jaundice× 2. 07388-WBC count×0. 21118+5. 26593. With this formula, an operative mortality of 77. 8% was predicted. CONCLUSION: With a positive value from the formula, the patient should be operated on; otherwise non-operative treatment is advocated.
基金supported by The Hong Kong Polytechnic University through the project RU3Ythe Research Grant Council through the project PolyU 5128/13E+1 种基金National Natural Science Foundation of China(Grant No.51778313)Cooperative Innovation Center of Engineering Construction and Safety in Shangdong Blue Economic Zone
文摘This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.
基金supposed by the Program for Science and Technology of Shandong Province (2011GHY11521)the Department of Education of Shandong Province (No. J11LB07)the Natural Science Foundation of Qingdao City (Nos. 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.
文摘A recent method for assessing the local influence is introduced by Cook(1986), in which the normal curvature of the influence graph based on the likelihood displacement is used to monitor the influence of small perturbation. Since then this method has been applied to various kind of models. However, the local influence in multivariate analysis is still an unexplored area because the influence for many statistics in multivariate analysis is not convenient to handle based on the Cook's likelihood displacement. In this paper, we suggest a method with a slight modification in Cook's approach to assess the local influence of small perturbation on a certain statistic. The local influence of the perturbation on eigenvalue and eigenvector of variance-covariance matrix in theoretical and sample version is assessed, some results for the other statistics in multivariate analysis such as generalized variance, canonical correlations are studied. Finally, two examples are analysed for illustration.
文摘AIM To assess the relationship between gastric acid output (GAO) and both pattern of gastroesophageal reflux (GER) and esophageal lesions, and to evaluate the role of GAO and other potential pathogenetic factors in the development of esophagitis. METHODS Gastric acid secretory testing and 24 h intraesophageal pH monitoring were performed in 31 patients with esophagitis and concomitant duodenal ulcer (E+DU) and compared with those of 72 patients with esophagitis (E) alone. RESULTS The GAO in patients with E+DU was significantly higher than in patients with E ( P <0 05). There was no significant difference between the two groups of patients as to endoscopicl findings and parameters of GER ( P >0 05). A multiple regression analysis with stepwise deletion showed that the pre sence of hiatal hernia (HH), GER in upright position and age appeared to correlate significantly with the presence of esophagitis. CONCLUSIONS No parallel relationship between GAO and severity of GER or esophageal lesions exists in patients with E+DU, and that GAO is not a major pathogenetic factor in GER disease.
基金Supported by the National Marine Public Welfare Research Project(No.201305043)the National Natural Science Foundation of China(No.41106134)the National Key Technology R&D Program of China(Nos.2011BAD13B02,2010BAC68B01)
文摘Fatty acids(FAs) provide energy and also can be used to trace trophic relationships among organisms.Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months.We examined fatty acid profiles in aestivated and non-aestivated A.japonicus using multivariate analyses(PERMANOVA,MDS,ANOSIM,and SIMPER).The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly.The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers.Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation,and long chain FAs such as eicosapentaenoic(EPA) and docosahexaenoic acid(DHA) that produced from intestinal degradation,are digested during deep aestivation.Specific changes in the fatty acid composition of A.japonicus during aestivation needs more detailed study in the future.
文摘This study evaluated the impact of chronicity (onset of injury to admission in-terval) on three domains of functional outcomes for a large group of traumatic brain injured (TBI) survivors. Subjects included 528 TBI adults who were treated in post-hospital residential rehabilitation centers. Subjects were assigned to one of three chronicity groups: 1) Early Interval (EI), 2.00 - 8.00 months n = 245, 2) Mid Interval (MI), 8.01 - 24.00 months n = 129, and (3) Late Interval (LI), 24.01 months and greater n = 154. Functional status was assessed with the MPAI-4. RM MANCOVA was applied to evaluate differences among groups from admission to discharge. Rasch analysis demonstrated satisfactory construct validity and internal consistency (Person reliability = 0.90 - 0.94, Item reliability = 0.99) for the admission and discharge MPAI-4s. Controlling for LOS and age, the RM MANCOVA revealed that each chronicity group showed significant improvement in MPAI-4 abilities, adjustment, and participation indices from admission to discharge (p < 0.001). Improvement observed from admission to discharge was the greatest among the EI group (p < 0.001). This study demonstrated the utility of multivariate statistical approaches for understanding the complexities of TBI treatment outcomes. As measured across three domains of functioning, rehabilitation was effective in reducing disability for participants in each chronicity group. Of the three groups, EI participants presented as the most disabled at admission but also made the greatest gains when assessed at discharge.
文摘Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and to interpret a large and complex water quality data sets collected from the Songhua River Basin. The data sets, which contained 14 parameters, were generated during the 7-year (1998-2004) monitoring program at 14 different sites along the rivers. Three significant sampling locations (less polluted sites, moderately polluted sites and highly polluted sites) were detected by CA method, and five latent factors (organic, inor-ganic, petrochemical, physiochemical, and heavy metals) were identified by PCA and FA methods. The re-sults of DA showed only five parameters (temperature, pH, dissolved oxygen, ammonia nitrogen, and nitrate nitrogen) and eight parameters (temperature, pH, dissolved oxygen, biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen, volatile phenols and total arsenic) were necessarily in temporal and spatial varia-tions analysis, respectively. Furthermore, this study revealed the major causes of water quality deterioration were related to inflow of effluent from domestic and industrial wastewater disposal.
文摘A novel multivariate similarity clustering analysis (MSCA) approach was used to estimate a biogeographical division scheme for the global terrestrial fauna and was compared against other widely used clustering algorithms. The faunal dataset included almost all terrestrial and freshwater fauna, a total of 4631 families, 141,814 genera, and 1,334,834 species. Our findings demonstrated that suitable results were only obtained with the MSCA method, which was associated with distinct hierarchies, reasonable structuring, and furthermore, conformed to biogeographical criteria. A total of seven kingdoms and 20 sub-kingdoms were identified. We discovered that the clustering results for the higher and lower animals did not differ significantly, leading us to consider that the analysis result is convincing as the first zoogeographical division scheme for global all terrestrial animals.