In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can ...In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can reproduce linear polynomials to the scheme quadric polynomials. Furthermore, we give the approximation error of the modified scheme. Our multivariate multiquadric quasi-interpolation scheme only requires information of lo- cation points but not that of the derivatives of approximated function. Finally, numerical experiments demonstrate that the approximation rate of our scheme is significantly im- proved which is consistent with the theoretical results.展开更多
In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using ...In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.展开更多
The aim of this survey paper is to propose a new concept "generator". In fact, generator is a single function that can generate the basis as well as the whole function space. It is a more fundamental concept than ba...The aim of this survey paper is to propose a new concept "generator". In fact, generator is a single function that can generate the basis as well as the whole function space. It is a more fundamental concept than basis. Various properties of generator are also discussed. Moreover, a special generator named multiquadric function is introduced. Based on the multiquadric generator, the multiquadric quasi-interpolation scheme is constructed, and furthermore, the properties of this kind of quasi-interpolation are discussed to show its better capacity and stability in approximating the high order derivatives.展开更多
Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance...Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.展开更多
文摘In this paper, by using multivariate divided differences to approximate the partial derivative and superposition, we extend the multivariate quasi-interpolation scheme based on dimension-splitting technique which can reproduce linear polynomials to the scheme quadric polynomials. Furthermore, we give the approximation error of the modified scheme. Our multivariate multiquadric quasi-interpolation scheme only requires information of lo- cation points but not that of the derivatives of approximated function. Finally, numerical experiments demonstrate that the approximation rate of our scheme is significantly im- proved which is consistent with the theoretical results.
基金supported by the State Key Development Program for Basic Research of China (Grant No 2006CB303102)Science and Technology Commission of Shanghai Municipality,China (Grant No 09DZ2272900)
文摘In this paper, we use a univariate multiquadric quasi-interpolation scheme to solve the one-dimensional nonlinear sine-Gordon equation that is related to many physical phenomena. We obtain a numerical scheme by using the derivative of the quasi-interpolation to approximate the spatial derivative and a difference scheme to approximate the temporal derivative. The advantage of the obtained scheme is that the algorithm is very simple so that it is very easy to implement. The results of numerical experiments are presented and compared with analytical solutions to confirm the good accuracy of the presented scheme.
基金Supported by the 973program-2006CB303102SGST 09DZ 2272900NSFC No.11026089
文摘The aim of this survey paper is to propose a new concept "generator". In fact, generator is a single function that can generate the basis as well as the whole function space. It is a more fundamental concept than basis. Various properties of generator are also discussed. Moreover, a special generator named multiquadric function is introduced. Based on the multiquadric generator, the multiquadric quasi-interpolation scheme is constructed, and furthermore, the properties of this kind of quasi-interpolation are discussed to show its better capacity and stability in approximating the high order derivatives.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 11070131 10801024+1 种基金 U0935004)the Fundamental Research Funds for the Central Universities, China
文摘Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.
基金The research is supported by the National Natural Science Foundation of China(Grant No.61572527)the Hunan Science Fund for Distinguished Young Scholars(Grant No.2019JJ20027)+1 种基金the Hunan R&D Program(Grant No.2017NK2383)the Mathematics and Interdisciplinary Sciences Project of Central South University。