In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased est...In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased estimator(MVUE) and a revised James-Stein estimators(RJSE) are investigated respectively under mean square error(MSE) criterion. Extensive simulations are conducted to show that performance of the PEBE is optimal among these three estimators under the MSE criterion.展开更多
Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data au...Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA Mgorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and elimi- nares problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm.展开更多
Based on the De.Morgan laws and Boolean simplification, a recursive decomposition method is introduced in this paper to identify the main exclusive safe paths and failed paths of a network. The reliability or the reli...Based on the De.Morgan laws and Boolean simplification, a recursive decomposition method is introduced in this paper to identify the main exclusive safe paths and failed paths of a network. The reliability or the reliability bound of a network can be conveniently expressed as the summation of the joint probabilities of these paths. Under the multivariate normal distribution assumption, a conditioned reliability index method is developed to evaluate joint probabilities of various exclusive safe paths and failed paths, and, finally, the seismic reliability or the reliability bound of an electric power system. Examples given in the paper show that the method is very simple and provides accurate results in the seismic reliability analysis.展开更多
This paper investigates and discusses the use of information divergence,through the widely used Kullback–Leibler(KL)divergence,under the multivariate(generalized)γ-order normal distribution(γ-GND).The behavior of t...This paper investigates and discusses the use of information divergence,through the widely used Kullback–Leibler(KL)divergence,under the multivariate(generalized)γ-order normal distribution(γ-GND).The behavior of the KL divergence,as far as its symmetricity is concerned,is studied by calculating the divergence of γ-GND over the Student’s multivariate t-distribution and vice versa.Certain special cases are also given and discussed.Furthermore,three symmetrized forms of the KL divergence,i.e.,the Jeffreys distance,the geometric-KL as well as the harmonic-KL distances,are computed between two members of the γ-GND family,while the corresponding differences between those information distances are also discussed.展开更多
Suppose Y - N(β, σ^2 In), where β ∈ R^n and σ^2 〉 0 are unknown. We study the admissibility of linear estimators of mean vector under a quadratic loss function. A necessary and sufficient condition of the admi...Suppose Y - N(β, σ^2 In), where β ∈ R^n and σ^2 〉 0 are unknown. We study the admissibility of linear estimators of mean vector under a quadratic loss function. A necessary and sufficient condition of the admissible linear estimator is given.展开更多
Suppose that an order restriction is imposed among several p-variate normal mean vectors. We are interested in testing the homogeneity of these mean vectors under this restriction. This problem is an extension of Sasa...Suppose that an order restriction is imposed among several p-variate normal mean vectors. We are interested in testing the homogeneity of these mean vectors under this restriction. This problem is an extension of Sasabuchi, Tanaka and Tsukamoto's problem.展开更多
Suppose that we observe y|θ,τ∼N_(p)(Xθ,τ^(−1)I_(p)),where θ is an unknown vector with unknown precisionτ.Estimating the regression coefficient θ with known τ has been well studied.However,statistical properti...Suppose that we observe y|θ,τ∼N_(p)(Xθ,τ^(−1)I_(p)),where θ is an unknown vector with unknown precisionτ.Estimating the regression coefficient θ with known τ has been well studied.However,statistical properties such as admissibility in estimating θ with unknownτare not well studied.Han[(2009).Topics in shrinkage estimation and in causal inference(PhD thesis).Warton School,University of Pennsylvania]appears to be the first to consider the problem,developing sufficient conditions for the admissibility of estimating means of multivariate normal distributions with unknown variance.We generalise the sufficient conditions for admissibility and apply these results to the normal linear regression model.2-level and 3-level hierarchical models with unknown precisionτare investigated when a standard class of hierarchical priors leads to admissible estimators of θ under the normalised squared error loss.One reason to consider this problem is the importance of admissibility in the hierarchical prior selection,and we expect that our study could be helpful in providing some reference for choosing hierarchical priors.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11201452 and 11271346)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123402120017)the Fundamental Research Funds for the Central Universities(Grant No.WK0010000052)
文摘In this paper, the Bayes estimator and the parametric empirical Bayes estimator(PEBE) of mean vector in multivariate normal distribution are obtained. The superiority of the PEBE over the minimum variance unbiased estimator(MVUE) and a revised James-Stein estimators(RJSE) are investigated respectively under mean square error(MSE) criterion. Extensive simulations are conducted to show that performance of the PEBE is optimal among these three estimators under the MSE criterion.
基金Supported by the National Social Science Foundation of China (No. 09BTJ012)Scientific Research Fund ofHunan Provincial Education Department (No. 09c390)+1 种基金supported in part by a HKUSeed Funding Program for Basic Research (Project No. 2009-1115-9042)a grant from Hong Kong ResearchGrant Council-General Research Fund (Project No. HKU779210M)
文摘Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA Mgorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and elimi- nares problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm.
基金National Outstanding Youth Science Foundation of China Under Grant No.598251005
文摘Based on the De.Morgan laws and Boolean simplification, a recursive decomposition method is introduced in this paper to identify the main exclusive safe paths and failed paths of a network. The reliability or the reliability bound of a network can be conveniently expressed as the summation of the joint probabilities of these paths. Under the multivariate normal distribution assumption, a conditioned reliability index method is developed to evaluate joint probabilities of various exclusive safe paths and failed paths, and, finally, the seismic reliability or the reliability bound of an electric power system. Examples given in the paper show that the method is very simple and provides accurate results in the seismic reliability analysis.
文摘This paper investigates and discusses the use of information divergence,through the widely used Kullback–Leibler(KL)divergence,under the multivariate(generalized)γ-order normal distribution(γ-GND).The behavior of the KL divergence,as far as its symmetricity is concerned,is studied by calculating the divergence of γ-GND over the Student’s multivariate t-distribution and vice versa.Certain special cases are also given and discussed.Furthermore,three symmetrized forms of the KL divergence,i.e.,the Jeffreys distance,the geometric-KL as well as the harmonic-KL distances,are computed between two members of the γ-GND family,while the corresponding differences between those information distances are also discussed.
基金This work is supported by The NNSF of China with Nos.10071090 and 10271013
文摘Suppose Y - N(β, σ^2 In), where β ∈ R^n and σ^2 〉 0 are unknown. We study the admissibility of linear estimators of mean vector under a quadratic loss function. A necessary and sufficient condition of the admissible linear estimator is given.
基金Supported by Shanghai Leading Academic Discipline Project, Project No. B803
文摘Suppose that an order restriction is imposed among several p-variate normal mean vectors. We are interested in testing the homogeneity of these mean vectors under this restriction. This problem is an extension of Sasabuchi, Tanaka and Tsukamoto's problem.
基金supported by the 111 Project of China(No.B14019)the National Natural Science Foundation of China[Grant No.11671146].
文摘Suppose that we observe y|θ,τ∼N_(p)(Xθ,τ^(−1)I_(p)),where θ is an unknown vector with unknown precisionτ.Estimating the regression coefficient θ with known τ has been well studied.However,statistical properties such as admissibility in estimating θ with unknownτare not well studied.Han[(2009).Topics in shrinkage estimation and in causal inference(PhD thesis).Warton School,University of Pennsylvania]appears to be the first to consider the problem,developing sufficient conditions for the admissibility of estimating means of multivariate normal distributions with unknown variance.We generalise the sufficient conditions for admissibility and apply these results to the normal linear regression model.2-level and 3-level hierarchical models with unknown precisionτare investigated when a standard class of hierarchical priors leads to admissible estimators of θ under the normalised squared error loss.One reason to consider this problem is the importance of admissibility in the hierarchical prior selection,and we expect that our study could be helpful in providing some reference for choosing hierarchical priors.