In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of...In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of phenotypes that are potentially related to the complex disease under study. Second, each phenotype is collected from the same subject repeatedly over time. In this study, we present a nonparametric regression approach to study multivariate and time-repeated phenotypes together by using the technique of the multivariate adaptive regression splines for analysis of longitudinal data (MASAL), which makes it possible to identify genes, gene-gene and gene-environment, including time, interactions associated with the phenotypes of interest. Furthermore, we propose a permutation test to assess the associations between the phenotypes and selected markers. Through simulation, we demonstrate that our proposed approach has advantages over the existing methods that examine each longitudinal phenotype separately or analyze the summarized values of phenotypes by compressing them into one-time-point phenotypes. Application of the proposed method to the Framingham Heart Study illustrates that the use of multivariate longitudinal phenotypes enhanced the significance of the association test.展开更多
基金The authors thank two anonymous referees for their constructive comments and suggestions. This work was supported by grant R01 DA016750-09 from the National Institute on Drug Abuse. Zhu's work was also supported by the National Natural Science Foundation of China (Grant No. 11001044), the Yhndamental Research ~nds for the Central Universities (11CXPY007, 10JCXK001), the Natural Science Foundation of Jilin Province (Grant No. 201215007), the Scientific Research Foundation for Returned Scholars, MOE of China, and the Program for Changjiang Scholars and Innovative Research Team in University. The Framingham Heart Study project is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (N01 HC25195). The Framingham data used for the analyses described in this manuscript were obtained through dbGaP (phs000128.v3.p3).
文摘In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of phenotypes that are potentially related to the complex disease under study. Second, each phenotype is collected from the same subject repeatedly over time. In this study, we present a nonparametric regression approach to study multivariate and time-repeated phenotypes together by using the technique of the multivariate adaptive regression splines for analysis of longitudinal data (MASAL), which makes it possible to identify genes, gene-gene and gene-environment, including time, interactions associated with the phenotypes of interest. Furthermore, we propose a permutation test to assess the associations between the phenotypes and selected markers. Through simulation, we demonstrate that our proposed approach has advantages over the existing methods that examine each longitudinal phenotype separately or analyze the summarized values of phenotypes by compressing them into one-time-point phenotypes. Application of the proposed method to the Framingham Heart Study illustrates that the use of multivariate longitudinal phenotypes enhanced the significance of the association test.