期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization, treatment and releases of PBDEs and PAHs in a typical municipal sewage treatment plant situated beside an urban river, East China 被引量:6
1
作者 Xiaowei Wang Beidou Xi +5 位作者 Shouliang Huo Wenjun Sun Hongwei Pan Jingtian Zhang Yuqing Ren Hongliang Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第7期1281-1290,共10页
Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of ... Characterization, treatment and releases of eight polybrominated diphenyl ethers (PBDEs) congeners and sixteen polycyclic aromatic hydrocarbons (PAHs) in wastewater were evaluated along the treatment processes of a typical secondary treatment municipal sewage treatment plant (STP) (in Hefei City) situated the beside Nanfei River, East China. The findings showed that the average concentrations of the total PBDEs in raw wastewater and treated effluent were 188.578 and 36.884 ng/L respectively. Brominated diphenyl ether (BDE) 209 congener, the predominant PBDE in the STP and Nanfei River, could be related to the discharge of car-industry-derived wastes. For PAHs, the average concentrations in raw wastewater and treated effluent were 5758.8 and 2240.4 ng/L respectively, with naphthalene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene being detected at the highest concentrations. PAHs mainly originate from the combustion of biomass/coal and petroleum. The STP reduced about 80% of the PBDEs and 61% of the PAHs, which were eliminated mainly by sedimentation processes. The removal rates of PBDEs/PAHs increased with the increase of their solid-water partitioning coefficients. Accordingly, the STP's effluent, containing some PBDE congeners (e.g., BDE 47, 99 and 209, etc.) and low-molecular-weight PAHs, could be an important contributor of these contaminants' input to Nanfei River. It resulted in a significant increase of PBDE/PAH concentrations and PAH toxicological risk in the river water downstream. About 4.040 kg/yr of PBDEs and 245.324 kg/yr of PAHs could be released into the Nanfei River. The current conventional wastewater treatment processes should be improved to remove the relatively low-molecular-weight PBDEs/PAHs more effectively. 展开更多
关键词 polybrominated diphenyl ethers polycyclic aromatic hydrocarbons municipal sewage treatment plant urban river
原文传递
Trophic transfer of mercury and methylmercury in an aquatic ecosystem impacted by municipal sewage effluents in Beijing, China
2
作者 Jianjie Fu, Yawei Wang, Qunfang Zhou, Guibin Jiang State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第8期1189-1194,共6页
Gaobeidian Lake, located in Beijing, China, serves as a recipient lake for efluents from a large municipal sewage treatment plant (MSTP). In order to evaluate the effects of discharging MSTP efluent on the mercury c... Gaobeidian Lake, located in Beijing, China, serves as a recipient lake for efluents from a large municipal sewage treatment plant (MSTP). In order to evaluate the effects of discharging MSTP efluent on the mercury contamination of the local aquatic ecosystem, sediment cores, water, plankton, fish, and turtle samples were collected from Gaobeidian Lake for mercury speciation analysis. High concentrations of total mercury (T-Hg) were detected in sediment cores (5.24–17.0 μg/g dry weight (dw), average: 10.1 μg/g). The ratio of methylmercury (MeHg) to T-Hg was less than 0.3% in sediments and ranged from 35% to 76% in biota samples. The highest level of T-Hg and MeHg were found in aquatic bryophyte and crucian carp (3673 and 437 ng/g dw, respectively). The relative contents of MeHg were significantly correlated with trophic levels (R2 = 0.5506, p 0.001), which confirmed that MeHg can be bio-transferred and biomagnified via food chain in this aquatic ecosystem. 展开更多
关键词 METHYLMERCURY total mercury trophic levels aquatic ecosystem municipal sewage treatment plants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部