Muramidase-released protein(MRP)is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis(S.suis).However,the identification of viable therapeutics for S.suis infection w...Muramidase-released protein(MRP)is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis(S.suis).However,the identification of viable therapeutics for S.suis infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation.Dihydroartemisinin(DhA)is an artemisinin derivative with potential anti-inflammatory activity.The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure.This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages.With the candidate mechanism in mind,we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP.The innate immune response in mice was drastically triggered by MRP,manifesting as splenic and systemic inflammation with splenomegaly,immune cell infiltration,and an elevation in pro-inflammatory cytokines.A crucial role for Toll-like receptor 4(TLR4)in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B(NF-kB)activation was revealed by TLR4 blockade.In addition,NFkB-dependent transducer and activator of transcription 3(STAT3)and mitogen-activated protein kinases(MAPKs)activation was required for the inflammatory signal transduction engendered by MRP.Intriguingly,we observed an alleviation effect of DhA on the MRP-induced immune response,which referred to the suppression of TLR4-mediated actuation of NF-kB-STAT3/MAPK cascades.The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-kB activation,followed by an increase in the activity of STAT3 or MAPKs.DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade,highlighting the therapeutic potential of DhA in targeting S.suis infection diseases.展开更多
Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell...Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.展开更多
Objective: To investigate the relationship between the expression of multidrug resistance-associated protein (MRP) and clinicopathological factors and prognosis. Methods: The expression of MRP in 62 cases with non-sma...Objective: To investigate the relationship between the expression of multidrug resistance-associated protein (MRP) and clinicopathological factors and prognosis. Methods: The expression of MRP in 62 cases with non-small cell lung cancer (NSCLC) was detected using immunohistochemistry method. The expression of MRP in 30 cases of NSCLC and corresponding normal lung tissues were detected using immunohistochemistry and Western Blot. Results: this study of tumor tissues confirmed the plasma membrane and/or cytoplasm locations of MRP. There was apparent difference between normal lung tissues and NSCLC in MRP. The survival analysis of 62 NSCLC showed that the mean survival time of the patients with negative MRP expression was 69.8117.41 months and that of patients with positive MRP expression, 25.384.46 months. Log-rank test suggested that the difference between them was significant (P=0.0156). It was also found that in squamous cell lung cancer the statistically significant difference between the mean survival time of patients with positive MRP expression and those with negative MRP expression (P=0.0153). Multivariate Cox model analysis suggested that the survival time was significantly related to expression of MRP (P=0.035) and lymphatic metastasis (P=0.038). Conclusion: MRP expression in NSCLC is significantly higher compared with normal lung tissues. The mean survival time of patients with negative MRP was relative longer and expression of MRP was an independent factor for prognosis.展开更多
原发性肝癌(primary of liver)是我国常见的恶性肿瘤之一.手术切除率相对较低,术后复发率较高,许多肿瘤常规化疗效果差,预后不良,而肿瘤多药耐药性(MDR)则是肿瘤化疗失败的关键因素.多药耐药相关蛋白(multidrug associated protein,MRP...原发性肝癌(primary of liver)是我国常见的恶性肿瘤之一.手术切除率相对较低,术后复发率较高,许多肿瘤常规化疗效果差,预后不良,而肿瘤多药耐药性(MDR)则是肿瘤化疗失败的关键因素.多药耐药相关蛋白(multidrug associated protein,MRP)是一种介导多药耐药性的跨膜转运蛋白,能减少细胞内药物聚积,或改变药物在细胞内分布,从而影响化疗疗效及患者生存.主要针对MRP的结构和功能、在正常组织和肝癌细胞中的表达,以及多药耐药相关蛋白MRP的耐药机制和耐药性逆转等因素进行综述,以为临床提高肝癌的综合治疗水平提供理论基础.展开更多
Multidrug resistance proteins(MRPs) are members of the C family of a group of proteins named ATP-binding cassette(ABC) transporters.These ABC transporters together form the largest branch of proteins within the human ...Multidrug resistance proteins(MRPs) are members of the C family of a group of proteins named ATP-binding cassette(ABC) transporters.These ABC transporters together form the largest branch of proteins within the human body.The MRP family comprises of 13 members,of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell.They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione(GSH),glucuronate,or sulphate.In addition,MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH.Collectively,MRPs can transport drugs that differ structurally and mechanistically,including natural anticancer drugs,nucleoside analogs,antimetabolites,and tyrosine kinase inhibitors.Many of these MRPs transport physiologically important anions such as leukotriene C4,bilirubin glucuronide,and cyclic nucleotides.This review focuses mainly on the physiological functions,cellular resistance characteristics,and probable in vivo role of MRP1 to MRP9.展开更多
Objective: To investigate the effects of neoadjuvant chemotherapy on the expression of drug resistance genes, multidrug resistance-1 (MDR1) and multidrug resistance-associated protein (MRP), in patients with primary b...Objective: To investigate the effects of neoadjuvant chemotherapy on the expression of drug resistance genes, multidrug resistance-1 (MDR1) and multidrug resistance-associated protein (MRP), in patients with primary breast cancer. Methods: MDR1 and MRP expression were detected by semi-quantitative RT-PCR in 20 patients with primary breast cancer, before and after chemotherapy. Results: Before chemotherapy, MDR1 and MRP expression can be detected in 15 cases (75%) and 18 cases (90%) respectively. After chemotherapy, expression of MDR1 is not significantly different from that before chemotherapy, but expression of MRP is significantly different from that before chemotherapy. Conclusion: Expression of drug resistance gene MRP, but not MDR1, is enhanced in patients with primary breast cancer submitted to neoadjuvant chemotherapy.展开更多
To improve catalytic activity of ribozyme on its substrate, the multi-ribozyme expression system was designed and constructed from 20 cis-acting hammerhead ribozymes undergoing self-cleavage with 10 trans-acting hamme...To improve catalytic activity of ribozyme on its substrate, the multi-ribozyme expression system was designed and constructed from 20 cis-acting hammerhead ribozymes undergoing self-cleavage with 10 trans-acting hammerhead ribozymes inserted alternatively regularly and the plasmid of pGEM-MDR1/MRP1 used to transcribe the MDR1/MRPl(196/210) substrate containing double target sites was also constructed by DNA recombination. Endonuclease digestion analysis and DNA sequencing indicate all the recombinant plasmids were correct. The clea- vage activities were evaluated for the multi-ribozyme expression system on the MDR1/MRP1 substrate in the cell free system. The results demonstrate that the cis-acting hammerhead ribozymes in the multi-ribozyme expression system were able to cleave themselves and the 72 nt of 196Rz and the 71 nt of 210Rz trans-acting hammerhead ribozymes were liberated effectively, and the trans-acting hammerhead ribozymes released were able to act on the MDR1/MRP1 double target RNA substrate and cleave the target RNA at specific sites effectively. The multi- ribozyme expression system of the [Coat'A196Rz/Coat'B210Rz]5 is more significantly superior to that of the [Coat'A 196Rz/Coat'B210Rz] 1 in cleavage of RNA substrate. The fractions cleaved by [Coat'A 196Rz/Coat'B210Rz]5 on the MDR1/MRP1 substrate for 8 h at observed temperatures showed no marked difference. The studies of Mg^2+ on cleavage efficiency indicate that cleavage reaction is dependent on Mg^2+ ions concentration. The plot of lg(kobs) vs. lgc(Mg^2+) displays a linear relationship between 2.5 mmol/L and 20 mmol/L Mg^2+. It suggests that Mg^2+ ions play a crucial role in multi-ribozyme cleavage on the substrate.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.:2022YFF1100104 and 2022YFF1100102)the National Natural Science Foundation of China(Grant Nos.:31625025,32172749,and 32202701)+1 种基金the 2115 Talent Development Program of China Agricultural University(Grant No.:00109016)the Zhengzhou 1125 Talent Program,China(Grant No.:2016XT016).
文摘Muramidase-released protein(MRP)is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis(S.suis).However,the identification of viable therapeutics for S.suis infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation.Dihydroartemisinin(DhA)is an artemisinin derivative with potential anti-inflammatory activity.The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure.This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages.With the candidate mechanism in mind,we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP.The innate immune response in mice was drastically triggered by MRP,manifesting as splenic and systemic inflammation with splenomegaly,immune cell infiltration,and an elevation in pro-inflammatory cytokines.A crucial role for Toll-like receptor 4(TLR4)in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B(NF-kB)activation was revealed by TLR4 blockade.In addition,NFkB-dependent transducer and activator of transcription 3(STAT3)and mitogen-activated protein kinases(MAPKs)activation was required for the inflammatory signal transduction engendered by MRP.Intriguingly,we observed an alleviation effect of DhA on the MRP-induced immune response,which referred to the suppression of TLR4-mediated actuation of NF-kB-STAT3/MAPK cascades.The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-kB activation,followed by an increase in the activity of STAT3 or MAPKs.DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade,highlighting the therapeutic potential of DhA in targeting S.suis infection diseases.
基金This work was supported by grants from Shanghai Educational Committee Funds(No.99B18).
文摘Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47III. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.
文摘Objective: To investigate the relationship between the expression of multidrug resistance-associated protein (MRP) and clinicopathological factors and prognosis. Methods: The expression of MRP in 62 cases with non-small cell lung cancer (NSCLC) was detected using immunohistochemistry method. The expression of MRP in 30 cases of NSCLC and corresponding normal lung tissues were detected using immunohistochemistry and Western Blot. Results: this study of tumor tissues confirmed the plasma membrane and/or cytoplasm locations of MRP. There was apparent difference between normal lung tissues and NSCLC in MRP. The survival analysis of 62 NSCLC showed that the mean survival time of the patients with negative MRP expression was 69.8117.41 months and that of patients with positive MRP expression, 25.384.46 months. Log-rank test suggested that the difference between them was significant (P=0.0156). It was also found that in squamous cell lung cancer the statistically significant difference between the mean survival time of patients with positive MRP expression and those with negative MRP expression (P=0.0153). Multivariate Cox model analysis suggested that the survival time was significantly related to expression of MRP (P=0.035) and lymphatic metastasis (P=0.038). Conclusion: MRP expression in NSCLC is significantly higher compared with normal lung tissues. The mean survival time of patients with negative MRP was relative longer and expression of MRP was an independent factor for prognosis.
文摘原发性肝癌(primary of liver)是我国常见的恶性肿瘤之一.手术切除率相对较低,术后复发率较高,许多肿瘤常规化疗效果差,预后不良,而肿瘤多药耐药性(MDR)则是肿瘤化疗失败的关键因素.多药耐药相关蛋白(multidrug associated protein,MRP)是一种介导多药耐药性的跨膜转运蛋白,能减少细胞内药物聚积,或改变药物在细胞内分布,从而影响化疗疗效及患者生存.主要针对MRP的结构和功能、在正常组织和肝癌细胞中的表达,以及多药耐药相关蛋白MRP的耐药机制和耐药性逆转等因素进行综述,以为临床提高肝癌的综合治疗水平提供理论基础.
基金supported in part by grants from NIH R15No.1R15CA143701(to Z.S.Chen)St.John's University Seed Grant No.579-1110-7002(Z.S.Chen)
文摘Multidrug resistance proteins(MRPs) are members of the C family of a group of proteins named ATP-binding cassette(ABC) transporters.These ABC transporters together form the largest branch of proteins within the human body.The MRP family comprises of 13 members,of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell.They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione(GSH),glucuronate,or sulphate.In addition,MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH.Collectively,MRPs can transport drugs that differ structurally and mechanistically,including natural anticancer drugs,nucleoside analogs,antimetabolites,and tyrosine kinase inhibitors.Many of these MRPs transport physiologically important anions such as leukotriene C4,bilirubin glucuronide,and cyclic nucleotides.This review focuses mainly on the physiological functions,cellular resistance characteristics,and probable in vivo role of MRP1 to MRP9.
文摘Objective: To investigate the effects of neoadjuvant chemotherapy on the expression of drug resistance genes, multidrug resistance-1 (MDR1) and multidrug resistance-associated protein (MRP), in patients with primary breast cancer. Methods: MDR1 and MRP expression were detected by semi-quantitative RT-PCR in 20 patients with primary breast cancer, before and after chemotherapy. Results: Before chemotherapy, MDR1 and MRP expression can be detected in 15 cases (75%) and 18 cases (90%) respectively. After chemotherapy, expression of MDR1 is not significantly different from that before chemotherapy, but expression of MRP is significantly different from that before chemotherapy. Conclusion: Expression of drug resistance gene MRP, but not MDR1, is enhanced in patients with primary breast cancer submitted to neoadjuvant chemotherapy.
基金Supported by Fund of Shenzhen Bureau of Science and Technology, China(No.20008).
文摘To improve catalytic activity of ribozyme on its substrate, the multi-ribozyme expression system was designed and constructed from 20 cis-acting hammerhead ribozymes undergoing self-cleavage with 10 trans-acting hammerhead ribozymes inserted alternatively regularly and the plasmid of pGEM-MDR1/MRP1 used to transcribe the MDR1/MRPl(196/210) substrate containing double target sites was also constructed by DNA recombination. Endonuclease digestion analysis and DNA sequencing indicate all the recombinant plasmids were correct. The clea- vage activities were evaluated for the multi-ribozyme expression system on the MDR1/MRP1 substrate in the cell free system. The results demonstrate that the cis-acting hammerhead ribozymes in the multi-ribozyme expression system were able to cleave themselves and the 72 nt of 196Rz and the 71 nt of 210Rz trans-acting hammerhead ribozymes were liberated effectively, and the trans-acting hammerhead ribozymes released were able to act on the MDR1/MRP1 double target RNA substrate and cleave the target RNA at specific sites effectively. The multi- ribozyme expression system of the [Coat'A196Rz/Coat'B210Rz]5 is more significantly superior to that of the [Coat'A 196Rz/Coat'B210Rz] 1 in cleavage of RNA substrate. The fractions cleaved by [Coat'A 196Rz/Coat'B210Rz]5 on the MDR1/MRP1 substrate for 8 h at observed temperatures showed no marked difference. The studies of Mg^2+ on cleavage efficiency indicate that cleavage reaction is dependent on Mg^2+ ions concentration. The plot of lg(kobs) vs. lgc(Mg^2+) displays a linear relationship between 2.5 mmol/L and 20 mmol/L Mg^2+. It suggests that Mg^2+ ions play a crucial role in multi-ribozyme cleavage on the substrate.