Objective:To study the jelly formulation produced by Musa acuminata Colla(AAA Group) peels and evaluate its antioxidant properties which are related to the product quality.Methods:The formulations of peel jelly were e...Objective:To study the jelly formulation produced by Musa acuminata Colla(AAA Group) peels and evaluate its antioxidant properties which are related to the product quality.Methods:The formulations of peel jelly were established under two-level full factorial designs within two blocks and one center point.Regarding response optimizer,the amount of sugar and citric acid was obtained;hence,the peel jellies were produced.The evaluation of antioxidant properties was conducted by using total phenolic content(TPC)assay and 1,1 diphenyl-2-picrylhydrazyl(DPPH) free radical assay.Results:The TPC of peel powder varied from 91.8 to 602.26 mg gallic acid equivalents/100 g dry weight,and 5%-7% peel jellies had phenolic content ranging from 29.38 to 48.31 mg gallic acid equivalents/100 g dry weight.The results of DPPH test indicated that at 10 mg/mL,the peel powder showed 89% DPPH inhibition,while 7% peel jelly prominently exhibited 84% DPPH inhibition.The correlation between DPPH IC50 value and TPC of peel powder as well as peel jelly was quite reasonably high with correlation coefficient ranging from 0.843 7 to 0.995.Conclusions:TPC can be used as an indicator in assessing the antioxidant activity of fruits and vegetables.The present investigation reveals that TPC is mainly responsible for DPPH free radical scavenging capacity.展开更多
Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees.The growth and productivity of Musa spp are severely impacted by the ...Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees.The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount.The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’being gluttonous for water needs.This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG.As a result,drought stress reduced the morphological characteristics such as shoots number,shoot length,roots number,and survival percentage and biochemical characteristics such as chlorophyll a,b,carotenoids,stomatal status,and RWC.While proline content increased in the leaf of M.acuminata L.Media complemented with K2SiO3(2 to 6 mM)either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics.The activities of CAT,POD,and PPO enzymes increased significantly compared to control.Furthermore,the lowest PPO,CAT,and POD activity were achieved.Additionally,K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior.Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.展开更多
【目的】研究香蕉果实抗性淀粉形成机理,为选育高抗性淀粉香蕉品种和调控抗性淀粉合成提供理论基础。【方法】以‘巴西’蕉(Musa acuminata L.AAA group cv.Brazilian)果肉为试材,对香蕉果实采前和采后抗性淀粉含量变化及其与其他类型...【目的】研究香蕉果实抗性淀粉形成机理,为选育高抗性淀粉香蕉品种和调控抗性淀粉合成提供理论基础。【方法】以‘巴西’蕉(Musa acuminata L.AAA group cv.Brazilian)果肉为试材,对香蕉果实采前和采后抗性淀粉含量变化及其与其他类型淀粉相关关系进行分析。【结果】香蕉果实发育过程中,总淀粉、直链淀粉、支链淀粉及抗性淀粉含量整体呈上升趋势,后熟过程中各种淀粉含量逐渐下降;乙烯处理加速了总淀粉、直链淀粉和支链淀粉的降解,但抗性淀粉降解速度较自然后熟慢;1-MCP处理香蕉果实各种淀粉含量呈先增后降的单峰曲线变化。相关性分析表明:香蕉采前果实抗性淀粉合成与直链淀粉含量变化呈显著正相关,与总淀粉和支链淀粉含量变化不相关;1-MCP处理后,抗性淀粉含量变化与直链淀粉含量达到显著正相关水平,与总淀粉含量变化不相关。【结论】香蕉果实抗性淀粉形成与直链淀粉含量密切相关,在香蕉果实发育过程中可通过调控直链淀粉含量促进抗性淀粉合成。展开更多
The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of re...The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed.展开更多
基金Supported by the Research University Grant Scheme of Tier 1 provided by Universiti Teknologi Malaysia(Grant No.PY/2014/03649)
文摘Objective:To study the jelly formulation produced by Musa acuminata Colla(AAA Group) peels and evaluate its antioxidant properties which are related to the product quality.Methods:The formulations of peel jelly were established under two-level full factorial designs within two blocks and one center point.Regarding response optimizer,the amount of sugar and citric acid was obtained;hence,the peel jellies were produced.The evaluation of antioxidant properties was conducted by using total phenolic content(TPC)assay and 1,1 diphenyl-2-picrylhydrazyl(DPPH) free radical assay.Results:The TPC of peel powder varied from 91.8 to 602.26 mg gallic acid equivalents/100 g dry weight,and 5%-7% peel jellies had phenolic content ranging from 29.38 to 48.31 mg gallic acid equivalents/100 g dry weight.The results of DPPH test indicated that at 10 mg/mL,the peel powder showed 89% DPPH inhibition,while 7% peel jelly prominently exhibited 84% DPPH inhibition.The correlation between DPPH IC50 value and TPC of peel powder as well as peel jelly was quite reasonably high with correlation coefficient ranging from 0.843 7 to 0.995.Conclusions:TPC can be used as an indicator in assessing the antioxidant activity of fruits and vegetables.The present investigation reveals that TPC is mainly responsible for DPPH free radical scavenging capacity.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R188)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘Drought stress has become more common in recent years as a result of climate change impacts on the production of banana crops and other fruit trees.The growth and productivity of Musa spp are severely impacted by the gradual degradation of water resources and the erratic distribution pattern of annual precipitation amount.The aim of the work includes increased drought tolerance in light of water scarcity in the world as a result of the bananas’being gluttonous for water needs.This investigation was carried out from 2019 to 2020 to study the effect of potassium silicate on morphological growth and biochemical parameters of Musa acuminata L under drought stress by PEG.As a result,drought stress reduced the morphological characteristics such as shoots number,shoot length,roots number,and survival percentage and biochemical characteristics such as chlorophyll a,b,carotenoids,stomatal status,and RWC.While proline content increased in the leaf of M.acuminata L.Media complemented with K2SiO3(2 to 6 mM)either individually or in combination with PEG led to an improvement in all morphological and biochemical characteristics.The activities of CAT,POD,and PPO enzymes increased significantly compared to control.Furthermore,the lowest PPO,CAT,and POD activity were achieved.Additionally,K2SiO3 treatments under drought stress successfully enhanced the leaf stomatal behavior.Our results suggest that K2SiO3 can help to maintain plant integrity in the tested cultivar under drought stress.
文摘【目的】研究香蕉果实抗性淀粉形成机理,为选育高抗性淀粉香蕉品种和调控抗性淀粉合成提供理论基础。【方法】以‘巴西’蕉(Musa acuminata L.AAA group cv.Brazilian)果肉为试材,对香蕉果实采前和采后抗性淀粉含量变化及其与其他类型淀粉相关关系进行分析。【结果】香蕉果实发育过程中,总淀粉、直链淀粉、支链淀粉及抗性淀粉含量整体呈上升趋势,后熟过程中各种淀粉含量逐渐下降;乙烯处理加速了总淀粉、直链淀粉和支链淀粉的降解,但抗性淀粉降解速度较自然后熟慢;1-MCP处理香蕉果实各种淀粉含量呈先增后降的单峰曲线变化。相关性分析表明:香蕉采前果实抗性淀粉合成与直链淀粉含量变化呈显著正相关,与总淀粉和支链淀粉含量变化不相关;1-MCP处理后,抗性淀粉含量变化与直链淀粉含量达到显著正相关水平,与总淀粉含量变化不相关。【结论】香蕉果实抗性淀粉形成与直链淀粉含量密切相关,在香蕉果实发育过程中可通过调控直链淀粉含量促进抗性淀粉合成。
文摘The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings ( Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H 2O 2 metabolism. Compared with water_treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H 2O 2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H 2O 2 and thiobarbituric acid_reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H 2O 2 treatments (1.5 -2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H 2O 2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H 2O 2 may be required for SA_enhanced cold tolerance. The significance of the interaction of SA, H 2O 2 and H 2O 2_metabolizing enzymes during cold stress has been discussed.