An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory funct...An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory functions. In such long gap injuries, nerve end-to-end suture is physically impossible. Therefore, bridging a long nerve-gap is critical to re-establish adequate mechanical support for separated nerve ends, and prevent the diffusion of neurotrophic and neurotropic factors secreted by transected stumps (Deumens et al., 2010).展开更多
Muscle-derived stem cells were isolated from the skeletal muscle of Sprague-Dawley neonatal rats aged 3 days old. Cells at passage 5 were incubated in Dulbecco's modified Eagle's medium supplemented with 10% (v/v)...Muscle-derived stem cells were isolated from the skeletal muscle of Sprague-Dawley neonatal rats aged 3 days old. Cells at passage 5 were incubated in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) fetal bovine serum, 20 IJg/L nerve growth factor, 20 pg/L basic fibroblast growth factor and 1% (v/v) penicillin for 6 days. Cells presented with long processes, similar to nerve cells. Connections were formed between cell processes. Immunocytochemical staining with neuron specific enolase verified that cells differentiated into neuron-like cells. Immunofluorescence cytochemistry and western blot results revealed that the expression of protein hairy enhancer of split-1 was significantly reduced. These results indicate that low expression of protein hairy enhancer of split-1 participates in the differentiation of muscle-derived stem cells into neuron-like cells.展开更多
OBJECTIVE: To identify global research trends of muscle-derived stem cells (MDSCs) using a bibliometric analysis of the Web of Science, Research Portfolio Online Reporting Tools of the National Institutes of Health...OBJECTIVE: To identify global research trends of muscle-derived stem cells (MDSCs) using a bibliometric analysis of the Web of Science, Research Portfolio Online Reporting Tools of the National Institutes of Health (NIH), and the Clinical Trials registry database (ClinicalTrials.gov). DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for MDSCs from 2002 to 2011 using the Web of Science, NIH, and ClinicalTrials.gov. SELECTION CRITERIA: Inclusion criteria: (1) Web of Science: (a) peer-reviewed articles on MDSCs that were published and indexed in the Web of Science. (b) Type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material and news items. (c) Year of publication: 2002-2011. (d) Citation databases: Science Citation Index-Expanded (SCI-E), 1899-present; Conference Proceedings Citation Index-Science (CPCI-S), 1991-present; Book Citation Index-Science (BKCI-S), 2005-present. (2) NIH: (a) Projects on MDSCs supported by the NIH. (b) Fiscal year: 1988-present. (3) ClinicalTrials.gov: All clinical trials relating to MDSCs were searched in this database. Exclusion criteria: (1) Web of Science: (a) Articles that required manual searching or telephone access. (b) We excluded documents that were not published in the public domain. (c) We excluded a number of corrected papers from the total number of articles. (d) We excluded articles from the following databases: Social Sciences Citation Index (SSCI), 1898-present; Arts & Humanities Citation Index (A&HCI), 1975-present; Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH), 1991-present; Book Citation Index - Social Sciences & Humanities (BKCI-SSH), 2005-present; Current Chemical Reactions (CCR-EXPANDED), 1985-present; Index Chemicus (IC), 1993-present. (2) NIH: (a) We excluded publications related to MDSCs that were supported by the NIH. (b) We limited the keyword search to studies that included MDSCs within the title or abstract. (3) ClinicalTrials.gov: (a) We excluded clinical trials that were not in the ClinicalTrials.gov database. (b) We excluded clinical trials that dealt with stem cells other than MDSCs in the ClinicalTrials.gov database. MAIN OUTCOME MEASURES: (1) Type of literature; (2) annual publication output; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) top cited authors over the last 10 years; (7) projects financially supported by the NIH; and (8) clinical trials registered. RESULTS: (1) In all, 802 studies on MDSCs appeared in the Web of Science from 2002 to 2011, almost half of which derived from American authors and institutes. The number of studies on MDSCs has gradually increased over the past 10 years. Most papers on MDSCs appeared in journals with a particular focus on cell biology research, such as Experimental Cell Research, Journal of Cell Science, and PLoS One. (2) Eight MDSC research projects have received over US$6 billion in funding from the NIH. The current project led by Dr. Johnny Huard of the University of Pittsburgh-"Muscle-Based Tissue Engineering to Improve Bone Healing"-is supported by the NIH. Dr. Huard has been the most productive and top-cited author in the field of gene therapy and adult stem cell research in the Web of Science over last 10 years. (3) On ClinicalTrials.gov, "Muscle Derived Cell Therapy for Bladder Exstrophy Epispadias Induced Incontinence" Phase 1 is registered and sponsored by Johns Hopkins University and has been led by Dr. John P. Gearhart since November 2009. CONCLUSION: From our analysis of the literature and research trends, we found that MDSCs may offer further benefits in regenerative medicine.展开更多
We cultured rat muscle-derived stem cells in medium containing nerve growth factor and basic fi-broblast growth factor to induce neuronal-like cell differentiation.Immunocytochemical staining and reverse transcription...We cultured rat muscle-derived stem cells in medium containing nerve growth factor and basic fi-broblast growth factor to induce neuronal-like cell differentiation.Immunocytochemical staining and reverse transcription-PCR showed that the differentiated muscle-derived stem cells exhibited processes similar to those of neuronal-like cells and neuron-specific enolase expression,but Notch1 mRNA and protein expression was decreased.Down-regulation of Notch1 expression may facilitate neuronal-like cell differentiation from muscle-derived stem cells.展开更多
Muscle-derived stem cells (MDSCs) can come from a number of different sources, which are easy to isolate and culture, and are also useful in the transformation and expression of exogenous genes. Therefore, MDSCs cou...Muscle-derived stem cells (MDSCs) can come from a number of different sources, which are easy to isolate and culture, and are also useful in the transformation and expression of exogenous genes. Therefore, MDSCs could possibly be used for gene therapy in the treatment of neurological diseases. However, research on MDSCs has focused on identifying phenotypes and induced differentiation, with few in vivo animal experiments conducted. In this study, MDSCs were selected as seed cells and implanted into the rat spinal cord injury area. Results demonstrated that the MDSCs survived, migrated, and were distributed along the spinal nerves. Moreover, the motor function of rat lower limbs improved significantly, suggesting that MDSCs could be used as seed cells to repair spinal cord injury.展开更多
Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skele...Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skeletal muscles-derived stem cells (MDSCs) were isolated from adult skeleton muscle tissues by differential adhesion, and immunocytochemically identified by using Sca-1. In order to induce the proliferation but not differentiation of MDSCs, the cells were cultured in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12) supplemented with 1:50 B27, 20 ng/mL basic fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF) in a suspension for 6 days. Then these stem cells were treated with 5 μmol/L 5-azacytidine for 24 h in an adherence culture. The characteristics of induced cells were examined by immunocytochemistry, quantitative real time RT-PCR and morphological observation of cell phenotype. Our results showed that the appearance of some cells gradually changed from spindle-shape into polygonal or short-column-shape. Some of these post-treated cells could contract spontaneously and rhythmically. The expression of GATA-4 and cTnT was increased 1 and 2 week(s) after the treatment. And about 16.6% of post-treated cells were cTnT-positive. Therefore, we are led to conclude that skeletal muscle-derived stem cells could differentiate into cardiocyte-like cells, which exhibited some characteristics of cardiocytes.展开更多
The aim of this study was to investigate the mechanism of deposition of extracellular matrix induced by TGF-β1 in skeletal muscle-derived stem cells (MDSCs). Rat skeletal MDSCs were obtained by using preplate techn...The aim of this study was to investigate the mechanism of deposition of extracellular matrix induced by TGF-β1 in skeletal muscle-derived stem cells (MDSCs). Rat skeletal MDSCs were obtained by using preplate technique, and divided into four groups: group A (control group), group B (treated with TGF-β1, 10 ng/rnL), group C (treated with TGF-β1 and anti-connective tissue growth factor (CTGF), both in 10 ng/mL), and group D (treated with anti-CTGF, 10 ng/mL). The expression of CTGF, collagen type- I (COL- I ) and collagen type-III (COL-III) in MDSCs was examined by using RT-PCR, Western blot and immunofluorescent stain. It was found that one day after TGF-β1 treatment, the expression of CTGF, COL- I and COL-Ⅲ was increased dramatically. CTGF expression reached the peak on the day 2, and then decreased rapidly to a level of control group on the day 5. COL- I and COL-Ⅲ mRNA levels were overexpresed on the day 2 and 3 respectively, while their protein expression levels were up-regulated on the day 2 and reached the peak on the day 7. In group C, anti-CTGF could partly suppress the overexpression of COL-I and COL-Ill induced by TGF-131 one day after adding CTGF antibody. It was concluded that TGF-β1 could induce MDSCs to express CTGF, and promote the production of COL- I and COL-III. In contrast, CTGF antibody could partially inhibit the effect of TGF-β1 on the MDSCs by reducing the expression of COL- I and COL-III. Taken together, we demonstrated that TGF-β1-CTGF signaling played a crucial role in MDSCs synthesizing collagen proteins in vitro, which provided theoretical basis for exploring the methods postponing skeletal muscle fibrosis after nerve injury.展开更多
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characte...BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.展开更多
Objective:Esophageal squamous cell carcinoma(ESCC)has high morbidity and mortality rates worldwide.Cancer stem cells(CSCs)may cause tumor initiation,metastasis,and recurrence and are also responsible for chemotherapy ...Objective:Esophageal squamous cell carcinoma(ESCC)has high morbidity and mortality rates worldwide.Cancer stem cells(CSCs)may cause tumor initiation,metastasis,and recurrence and are also responsible for chemotherapy and radiotherapy failures.Myeloid-derived suppressor cells(MDSCs),in contrast,are known to be involved in mediating immunosuppression.Here,we aimed to investigate the mechanisms of interaction of CSCs and MDSCs in the tumor microenvironment.Methods:ESCC tissues and cell lines were evaluated.Neural precursor cell expressed,developmentally downregulated 9(NEDD9)was knocked down and overexpressed by lentiviral transfection.Quantitative PCR,Western blot,immunohistochemistry,cell invasion,flow cytometry,cell sorting,multiplex chemokine profiling,and tumor growth analyses were performed.Results:Microarray analysis revealed 10 upregulated genes in esophageal CSCs.Only NEDD9 was upregulated in CSCs using the sphere-forming method.NEDD9 expression was correlated with tumor invasion(P=0.0218),differentiation(P=0.0153),and poor prognosis(P=0.0373).Additionally,NEDD9 was required to maintain the stem-like phenotype.Screening of chemokine expression in ESCC cells with NEDD9 overexpression and knockdown showed that NEDD9 regulated C-X-C motif chemokine ligand 8(CXCL8)expression via the ERK pathway.CXCL8 mediated the recruitment of MDSCs induced by NEDD9 in vitro and in vivo.MDSCs promoted the stemness of ESCC cells through NEDD9 via the Notch pathway.Conclusions:As a marker of ESCC,NEDD9 maintained the stemness of ESCC cells and regulated CXCL8 through the ERK pathway to recruit MDSCs into the tumor,suggesting NEDD9 as a therapeutic target and novel prognostic marker for ESCC.展开更多
Sjögren’s syndrome(SS)is a systemic autoimmune disease characterized by progressive inflammation and tissue damage in salivary glands and lacrimal glands.Our previous studies showed that myeloid-derived suppress...Sjögren’s syndrome(SS)is a systemic autoimmune disease characterized by progressive inflammation and tissue damage in salivary glands and lacrimal glands.Our previous studies showed that myeloid-derived suppressor cells(MDSCs)exhibited impaired immunosuppressive function during disease progression in patients with SS and mice with experimental Sjögren’s syndrome(ESS),but it remains unclear whether restoring the function of MDSCs can effectively ameliorate the development of ESS.In this study,we found that murine olfactory ecto-mesenchymal stem cell-derived exosomes(OE-MSC-Exos)significantly enhanced the suppressive function of MDSCs by upregulating arginase expression and increasing ROS and NO levels.Moreover,treatment with OE-MSC-Exos via intravenous injection markedly attenuated disease progression and restored MDSC function in ESS mice.Mechanistically,OE-MSC-Exo-secreted IL-6 activated the Jak2/Stat3 pathway in MDSCs.In addition,the abundant S100A4 in OE-MSC-Exos acted as a key factor in mediating the endogenous production of IL-6 by MDSCs via TLR4 signaling,indicating an autocrine pathway of MDSC functional modulation by IL-6.Taken together,our results demonstrated that OE-MSC-Exos possess therapeutic potential to attenuate ESS progression by enhancing the immunosuppressive function of MDSCs,possibly constituting a new strategy for the treatment of Sjögren’s syndrome and other autoimmune diseases.展开更多
Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two c...Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two cell types, the signaling path- way of signal transducer and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly established c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mouse model, In this system, Stat3C-Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor cells as a result of Stat3C overexpression. The study supports the concept that activation of the Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, repopulating and converting into residential AT II epithelial cells in the lung.展开更多
Stress urinary incontinence is one of the most common diseases in urology. The main treatments for stress urinary incontinence are pharmacotherapy, physicobehavioral therapy and surgery.However, the results of present...Stress urinary incontinence is one of the most common diseases in urology. The main treatments for stress urinary incontinence are pharmacotherapy, physicobehavioral therapy and surgery.However, the results of present methods are not satisfactory. Tissue engineering is a newly emerging technology that may provide a novel method for the treatment of stress urinary incontinence.展开更多
文摘An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory functions. In such long gap injuries, nerve end-to-end suture is physically impossible. Therefore, bridging a long nerve-gap is critical to re-establish adequate mechanical support for separated nerve ends, and prevent the diffusion of neurotrophic and neurotropic factors secreted by transected stumps (Deumens et al., 2010).
基金supported by a grant from the Distinguished Young Scholars in Universities in Liaoning Province Development Plan, No. LJQ2011090
文摘Muscle-derived stem cells were isolated from the skeletal muscle of Sprague-Dawley neonatal rats aged 3 days old. Cells at passage 5 were incubated in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) fetal bovine serum, 20 IJg/L nerve growth factor, 20 pg/L basic fibroblast growth factor and 1% (v/v) penicillin for 6 days. Cells presented with long processes, similar to nerve cells. Connections were formed between cell processes. Immunocytochemical staining with neuron specific enolase verified that cells differentiated into neuron-like cells. Immunofluorescence cytochemistry and western blot results revealed that the expression of protein hairy enhancer of split-1 was significantly reduced. These results indicate that low expression of protein hairy enhancer of split-1 participates in the differentiation of muscle-derived stem cells into neuron-like cells.
基金supported by the National Natural Science Foundation of China, No. 30772190Creative Group Project from Education Department of Liaoning Province, No.2009T063
文摘OBJECTIVE: To identify global research trends of muscle-derived stem cells (MDSCs) using a bibliometric analysis of the Web of Science, Research Portfolio Online Reporting Tools of the National Institutes of Health (NIH), and the Clinical Trials registry database (ClinicalTrials.gov). DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for MDSCs from 2002 to 2011 using the Web of Science, NIH, and ClinicalTrials.gov. SELECTION CRITERIA: Inclusion criteria: (1) Web of Science: (a) peer-reviewed articles on MDSCs that were published and indexed in the Web of Science. (b) Type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material and news items. (c) Year of publication: 2002-2011. (d) Citation databases: Science Citation Index-Expanded (SCI-E), 1899-present; Conference Proceedings Citation Index-Science (CPCI-S), 1991-present; Book Citation Index-Science (BKCI-S), 2005-present. (2) NIH: (a) Projects on MDSCs supported by the NIH. (b) Fiscal year: 1988-present. (3) ClinicalTrials.gov: All clinical trials relating to MDSCs were searched in this database. Exclusion criteria: (1) Web of Science: (a) Articles that required manual searching or telephone access. (b) We excluded documents that were not published in the public domain. (c) We excluded a number of corrected papers from the total number of articles. (d) We excluded articles from the following databases: Social Sciences Citation Index (SSCI), 1898-present; Arts & Humanities Citation Index (A&HCI), 1975-present; Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH), 1991-present; Book Citation Index - Social Sciences & Humanities (BKCI-SSH), 2005-present; Current Chemical Reactions (CCR-EXPANDED), 1985-present; Index Chemicus (IC), 1993-present. (2) NIH: (a) We excluded publications related to MDSCs that were supported by the NIH. (b) We limited the keyword search to studies that included MDSCs within the title or abstract. (3) ClinicalTrials.gov: (a) We excluded clinical trials that were not in the ClinicalTrials.gov database. (b) We excluded clinical trials that dealt with stem cells other than MDSCs in the ClinicalTrials.gov database. MAIN OUTCOME MEASURES: (1) Type of literature; (2) annual publication output; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) top cited authors over the last 10 years; (7) projects financially supported by the NIH; and (8) clinical trials registered. RESULTS: (1) In all, 802 studies on MDSCs appeared in the Web of Science from 2002 to 2011, almost half of which derived from American authors and institutes. The number of studies on MDSCs has gradually increased over the past 10 years. Most papers on MDSCs appeared in journals with a particular focus on cell biology research, such as Experimental Cell Research, Journal of Cell Science, and PLoS One. (2) Eight MDSC research projects have received over US$6 billion in funding from the NIH. The current project led by Dr. Johnny Huard of the University of Pittsburgh-"Muscle-Based Tissue Engineering to Improve Bone Healing"-is supported by the NIH. Dr. Huard has been the most productive and top-cited author in the field of gene therapy and adult stem cell research in the Web of Science over last 10 years. (3) On ClinicalTrials.gov, "Muscle Derived Cell Therapy for Bladder Exstrophy Epispadias Induced Incontinence" Phase 1 is registered and sponsored by Johns Hopkins University and has been led by Dr. John P. Gearhart since November 2009. CONCLUSION: From our analysis of the literature and research trends, we found that MDSCs may offer further benefits in regenerative medicine.
基金Program for Liaoning Innovative Research Team in University(LNIRT),No.2008T113
文摘We cultured rat muscle-derived stem cells in medium containing nerve growth factor and basic fi-broblast growth factor to induce neuronal-like cell differentiation.Immunocytochemical staining and reverse transcription-PCR showed that the differentiated muscle-derived stem cells exhibited processes similar to those of neuronal-like cells and neuron-specific enolase expression,but Notch1 mRNA and protein expression was decreased.Down-regulation of Notch1 expression may facilitate neuronal-like cell differentiation from muscle-derived stem cells.
基金the Natural Science Foundation of Liaoning Province,No.20072204
文摘Muscle-derived stem cells (MDSCs) can come from a number of different sources, which are easy to isolate and culture, and are also useful in the transformation and expression of exogenous genes. Therefore, MDSCs could possibly be used for gene therapy in the treatment of neurological diseases. However, research on MDSCs has focused on identifying phenotypes and induced differentiation, with few in vivo animal experiments conducted. In this study, MDSCs were selected as seed cells and implanted into the rat spinal cord injury area. Results demonstrated that the MDSCs survived, migrated, and were distributed along the spinal nerves. Moreover, the motor function of rat lower limbs improved significantly, suggesting that MDSCs could be used as seed cells to repair spinal cord injury.
基金supported by a grant from the National Natural Sciences Foundation of China (No 30872627)Hubei Provincial Natural Sciences Foundation (No 2007ABA133)
文摘Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skeletal muscles-derived stem cells (MDSCs) were isolated from adult skeleton muscle tissues by differential adhesion, and immunocytochemically identified by using Sca-1. In order to induce the proliferation but not differentiation of MDSCs, the cells were cultured in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12) supplemented with 1:50 B27, 20 ng/mL basic fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF) in a suspension for 6 days. Then these stem cells were treated with 5 μmol/L 5-azacytidine for 24 h in an adherence culture. The characteristics of induced cells were examined by immunocytochemistry, quantitative real time RT-PCR and morphological observation of cell phenotype. Our results showed that the appearance of some cells gradually changed from spindle-shape into polygonal or short-column-shape. Some of these post-treated cells could contract spontaneously and rhythmically. The expression of GATA-4 and cTnT was increased 1 and 2 week(s) after the treatment. And about 16.6% of post-treated cells were cTnT-positive. Therefore, we are led to conclude that skeletal muscle-derived stem cells could differentiate into cardiocyte-like cells, which exhibited some characteristics of cardiocytes.
基金supported by the National Natural Science Foundation of China(No.30872627)
文摘The aim of this study was to investigate the mechanism of deposition of extracellular matrix induced by TGF-β1 in skeletal muscle-derived stem cells (MDSCs). Rat skeletal MDSCs were obtained by using preplate technique, and divided into four groups: group A (control group), group B (treated with TGF-β1, 10 ng/rnL), group C (treated with TGF-β1 and anti-connective tissue growth factor (CTGF), both in 10 ng/mL), and group D (treated with anti-CTGF, 10 ng/mL). The expression of CTGF, collagen type- I (COL- I ) and collagen type-III (COL-III) in MDSCs was examined by using RT-PCR, Western blot and immunofluorescent stain. It was found that one day after TGF-β1 treatment, the expression of CTGF, COL- I and COL-Ⅲ was increased dramatically. CTGF expression reached the peak on the day 2, and then decreased rapidly to a level of control group on the day 5. COL- I and COL-Ⅲ mRNA levels were overexpresed on the day 2 and 3 respectively, while their protein expression levels were up-regulated on the day 2 and reached the peak on the day 7. In group C, anti-CTGF could partly suppress the overexpression of COL-I and COL-Ill induced by TGF-131 one day after adding CTGF antibody. It was concluded that TGF-β1 could induce MDSCs to express CTGF, and promote the production of COL- I and COL-III. In contrast, CTGF antibody could partially inhibit the effect of TGF-β1 on the MDSCs by reducing the expression of COL- I and COL-III. Taken together, we demonstrated that TGF-β1-CTGF signaling played a crucial role in MDSCs synthesizing collagen proteins in vitro, which provided theoretical basis for exploring the methods postponing skeletal muscle fibrosis after nerve injury.
基金the National Science Center,No.N407121940the Wroclaw Centre of Biotechnology,the Leading National Research Centre(KNOW)program for the years 2014-2018
文摘BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.81602599,31400752,81771781,and U1804281)the National Key Research and Development Program of China(Grant No.2016YFC1303501)。
文摘Objective:Esophageal squamous cell carcinoma(ESCC)has high morbidity and mortality rates worldwide.Cancer stem cells(CSCs)may cause tumor initiation,metastasis,and recurrence and are also responsible for chemotherapy and radiotherapy failures.Myeloid-derived suppressor cells(MDSCs),in contrast,are known to be involved in mediating immunosuppression.Here,we aimed to investigate the mechanisms of interaction of CSCs and MDSCs in the tumor microenvironment.Methods:ESCC tissues and cell lines were evaluated.Neural precursor cell expressed,developmentally downregulated 9(NEDD9)was knocked down and overexpressed by lentiviral transfection.Quantitative PCR,Western blot,immunohistochemistry,cell invasion,flow cytometry,cell sorting,multiplex chemokine profiling,and tumor growth analyses were performed.Results:Microarray analysis revealed 10 upregulated genes in esophageal CSCs.Only NEDD9 was upregulated in CSCs using the sphere-forming method.NEDD9 expression was correlated with tumor invasion(P=0.0218),differentiation(P=0.0153),and poor prognosis(P=0.0373).Additionally,NEDD9 was required to maintain the stem-like phenotype.Screening of chemokine expression in ESCC cells with NEDD9 overexpression and knockdown showed that NEDD9 regulated C-X-C motif chemokine ligand 8(CXCL8)expression via the ERK pathway.CXCL8 mediated the recruitment of MDSCs induced by NEDD9 in vitro and in vivo.MDSCs promoted the stemness of ESCC cells through NEDD9 via the Notch pathway.Conclusions:As a marker of ESCC,NEDD9 maintained the stemness of ESCC cells and regulated CXCL8 through the ERK pathway to recruit MDSCs into the tumor,suggesting NEDD9 as a therapeutic target and novel prognostic marker for ESCC.
基金This work was supported by the National Natural Science Foundation of China(Grant nos.81701612,81971542,81702080,and 82071817)Natural Science Foundation of Jiangsu(Grant no.BK20170563)+2 种基金Chongqing International Institute for Immunology(2020YJC10)Summit of the Six Top Talents Program of Jiangsu Province(Grant no.2017-YY-006)Youth Science and Technology Talent Promotion Project of Jiangsu and Hong Kong Croucher Foundation(Grant no.260960116).
文摘Sjögren’s syndrome(SS)is a systemic autoimmune disease characterized by progressive inflammation and tissue damage in salivary glands and lacrimal glands.Our previous studies showed that myeloid-derived suppressor cells(MDSCs)exhibited impaired immunosuppressive function during disease progression in patients with SS and mice with experimental Sjögren’s syndrome(ESS),but it remains unclear whether restoring the function of MDSCs can effectively ameliorate the development of ESS.In this study,we found that murine olfactory ecto-mesenchymal stem cell-derived exosomes(OE-MSC-Exos)significantly enhanced the suppressive function of MDSCs by upregulating arginase expression and increasing ROS and NO levels.Moreover,treatment with OE-MSC-Exos via intravenous injection markedly attenuated disease progression and restored MDSC function in ESS mice.Mechanistically,OE-MSC-Exo-secreted IL-6 activated the Jak2/Stat3 pathway in MDSCs.In addition,the abundant S100A4 in OE-MSC-Exos acted as a key factor in mediating the endogenous production of IL-6 by MDSCs via TLR4 signaling,indicating an autocrine pathway of MDSC functional modulation by IL-6.Taken together,our results demonstrated that OE-MSC-Exos possess therapeutic potential to attenuate ESS progression by enhancing the immunosuppressive function of MDSCs,possibly constituting a new strategy for the treatment of Sjögren’s syndrome and other autoimmune diseases.
基金supported by the National Institutes of Health (Grant Nos. CA138759 and CA152099 to Yan CongHL087001 to Du Hong)
文摘Bone marrow mesenchymal stem cells (BMSCs) and myeloid lineage cells originate from the bone marrow, and influence each other in vivo. To elucidate the mechanism that controls the interrelationship between these two cell types, the signaling path- way of signal transducer and activator of transcription 3 (Stat3) was activated by overexpressing Stat3C in a newly established c-fms-rtTA/(TetO)7-CMV-Stat3C bitransgenic mouse model, In this system, Stat3C-Flag fusion protein was overexpressed in myeloid lineage cells after doxycycline treatment. Stat3C overexpression induced systematic elevation of macrophages and neutrophils in multiple organs. In the lung, tissue neoplastic pneumocyte proliferation was observed. After in vitro cultured hSP-B 1.5-kb lacZ BMSCs were injected into the bitransgenic mice, BMSCs were able to repopulate in multiple organs, self-renew in the bone marrow and spleen, and convert into alveolar type II epithelial cells. The bone marrow transplantation study indicated that increases of myeloid lineage cells and BMSC-AT II cell conversion were due to malfunction of myeloid progenitor cells as a result of Stat3C overexpression. The study supports the concept that activation of the Stat3 pathway in myeloid cells plays an important role in BMSC function, including homing, repopulating and converting into residential AT II epithelial cells in the lung.
文摘Stress urinary incontinence is one of the most common diseases in urology. The main treatments for stress urinary incontinence are pharmacotherapy, physicobehavioral therapy and surgery.However, the results of present methods are not satisfactory. Tissue engineering is a newly emerging technology that may provide a novel method for the treatment of stress urinary incontinence.