期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Attention-based neural network for end-to-end music separation
1
作者 Jing Wang Hanyue Liu +3 位作者 Haorong Ying Chuhan Qiu Jingxin Li Muhammad Shahid Anwar 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第2期355-363,共9页
The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sa... The end-to-end separation algorithm with superior performance in the field of speech separation has not been effectively used in music separation.Moreover,since music signals are often dual channel data with a high sampling rate,how to model longsequence data and make rational use of the relevant information between channels is also an urgent problem to be solved.In order to solve the above problems,the performance of the end-to-end music separation algorithm is enhanced by improving the network structure.Our main contributions include the following:(1)A more reasonable densely connected U-Net is designed to capture the long-term characteristics of music,such as main melody,tone and so on.(2)On this basis,the multi-head attention and dualpath transformer are introduced in the separation module.Channel attention units are applied recursively on the feature map of each layer of the network,enabling the network to perform long-sequence separation.Experimental results show that after the introduction of the channel attention,the performance of the proposed algorithm has a stable improvement compared with the baseline system.On the MUSDB18 dataset,the average score of the separated audio exceeds that of the current best-performing music separation algorithm based on the time-frequency domain(T-F domain). 展开更多
关键词 channel attention densely connected network end-to-end music separation
下载PDF
Music/voice separation based on the multi-repeating structure of Mel cepstrum coefficient 被引量:4
2
作者 ZHANG Tianqi XU Xin +1 位作者 WU Wangjun LIU Yu 《Chinese Journal of Acoustics》 CSCD 2015年第4期424-435,共12页
For the poor adaptability of the original repeating pattern, an improved music separation method of multi-repeating structure of Mel cepstrum coefficient (MFCC) is proposed. Firstly, the MFCC coefficient matrix (39... For the poor adaptability of the original repeating pattern, an improved music separation method of multi-repeating structure of Mel cepstrum coefficient (MFCC) is proposed. Firstly, the MFCC coefficient matrix (39-dimensional data) of the music signal was extracted. Then the cosine characteristic was applied to the count of similarity matrix of MFCC, and the fragments with consistent similarity are putted together. Next different repeating patterns are built for different groups. Thereby the spectrums of the background music and vocal were separated combined with ideal binary masking (IBM), and the corresponding time domain signals were obtained by inverse Fourier transform. Fnally, the improved method was tested on the music database of different types and length, and the separation results were compared with repeating method of Rafii and the non-negative matrix factorization based on flexible framework method of Ozerov. The experimental results showed that the separation performance of improved method was improved about 3 dB, and the performance of music with melody changed larger was significantly improved. Experiments verified that the improved method was an effective music separation algorithm and more stability. 展开更多
关键词 MFCC music/voice separation based on the multi-repeating structure of Mel cepstrum coefficient Mel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部