Rapamycin and its derivatives (rapalogs) , a group of allosteric inhibitors of mammalian target of rapamycin (mTOR), have been actively tested in a variety of cancer clinical trials, and some have been approved by the...Rapamycin and its derivatives (rapalogs) , a group of allosteric inhibitors of mammalian target of rapamycin (mTOR), have been actively tested in a variety of cancer clinical trials, and some have been approved by the Food and Drug Administration for the treatment of certain types of cancers. However, the single agent activity of these compounds in many tumor types remains modest. The mTOR axis is regulated by multiple upstream signaling pathways. Because the genes (e.g., PIK3CA, KRAS, PTEN, and LKB1) that encode key components in these signaling pathways are frequently mutated in human cancers, a subset of cancer types may be addicted to a given mutation, leading to hyperactivation of the mTOR axis. Thus, efforts have been made to demonstrate the potential impact of genetic alterations on rapalogbased or mTOR-targeted cancer therapy. This review will primarily summarize research advances in this direction.展开更多
The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, acts as a "master switch" for cellular anabolic and catabolic processes, regulating the rate of cell growth and proliferation. Dys...The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, acts as a "master switch" for cellular anabolic and catabolic processes, regulating the rate of cell growth and proliferation. Dysregulation of the mTOR signaling pathway occurs frequently in a variety of human tumors, and thus, mTOR has emerged as an important target for the design of anticancer agents. mTOR is found in two distinct multiprotein complexes within cells, mTORC1 and mTORC2. These two complexes consist of unique mTOR-interacting proteins and are regulated by different mechanisms. Enormous advances have been made in the development of drugs known as mTOR inhibitors. Rapamycin, the first defined inhibitor of mTOR, showed effectiveness as an anticancer agent in various preclinical models. Rapamycin analogues (rapalogs) with better pharmacologic properties have been developed. However, the clinical success of rapalogs has been limited to a few types of cancer. The discovery that mTORC2 directly phosphorylates Akt, an important survival kinase, adds new insight into the role of mTORC2 in cancer. This novel finding prompted efforts to develop the second generation of mTOR inhibitors that are able to target both mTORC1 and mTORC2. Here, we review the recent advances in the mTOR field and focus specifically on the current development of the second generation of mTOR inhibitors as anticancer agents.展开更多
基金supported by grants from the Georgia Cancer Coalition Distinguished Cancer Scholar award and NIH R01 CA118450, R01 CA160522 and P01CA116676
文摘Rapamycin and its derivatives (rapalogs) , a group of allosteric inhibitors of mammalian target of rapamycin (mTOR), have been actively tested in a variety of cancer clinical trials, and some have been approved by the Food and Drug Administration for the treatment of certain types of cancers. However, the single agent activity of these compounds in many tumor types remains modest. The mTOR axis is regulated by multiple upstream signaling pathways. Because the genes (e.g., PIK3CA, KRAS, PTEN, and LKB1) that encode key components in these signaling pathways are frequently mutated in human cancers, a subset of cancer types may be addicted to a given mutation, leading to hyperactivation of the mTOR axis. Thus, efforts have been made to demonstrate the potential impact of genetic alterations on rapalogbased or mTOR-targeted cancer therapy. This review will primarily summarize research advances in this direction.
基金supported in part by grants from NIH(CA115414 to S.H.)American Cancer Society(RSG-08-135-01-CNE to S.H.)
文摘The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, acts as a "master switch" for cellular anabolic and catabolic processes, regulating the rate of cell growth and proliferation. Dysregulation of the mTOR signaling pathway occurs frequently in a variety of human tumors, and thus, mTOR has emerged as an important target for the design of anticancer agents. mTOR is found in two distinct multiprotein complexes within cells, mTORC1 and mTORC2. These two complexes consist of unique mTOR-interacting proteins and are regulated by different mechanisms. Enormous advances have been made in the development of drugs known as mTOR inhibitors. Rapamycin, the first defined inhibitor of mTOR, showed effectiveness as an anticancer agent in various preclinical models. Rapamycin analogues (rapalogs) with better pharmacologic properties have been developed. However, the clinical success of rapalogs has been limited to a few types of cancer. The discovery that mTORC2 directly phosphorylates Akt, an important survival kinase, adds new insight into the role of mTORC2 in cancer. This novel finding prompted efforts to develop the second generation of mTOR inhibitors that are able to target both mTORC1 and mTORC2. Here, we review the recent advances in the mTOR field and focus specifically on the current development of the second generation of mTOR inhibitors as anticancer agents.