期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method
1
作者 Jingfa Ma Hu Liu Lingxiao Chen 《Computers, Materials & Continua》 SCIE EI 2024年第10期443-469,共27页
Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial pass... Demand-responsive transportation(DRT)is a flexible passenger service designed to enhance road efficiency,reduce peak-hour traffic,and boost passenger satisfaction.However,existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs.Consequently,there is a need to develop realtime DRT route optimization methods that integrate both initial and real-time requests.This paper presents a twostage,multi-objective optimization model for DRT vehicle scheduling.The first stage involves an initial scheduling model aimed at minimizing vehicle configuration,and operational,and CO_(2)emission costs while ensuring passenger satisfaction.The second stage develops a real-time scheduling model to minimize additional operational costs,penalties for time window violations,and costs due to rejected passengers,thereby addressing real-time demands.Additionally,an enhanced genetic algorithm based on Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is designed,incorporating multiple crossover points to accelerate convergence and improve solution efficiency.The proposed scheduling model is validated using a real network in Shanghai.Results indicate that realtime scheduling can serve more passengers,and improve vehicle utilization and occupancy rates,with only a minor increase in total operational costs.Compared to the traditional NSGA-II algorithm,the improved version enhances convergence speed by 31.7%and solution speed by 4.8%.The proposed model and algorithm offer both theoretical and practical guidance for real-world DRT scheduling. 展开更多
关键词 Demand responsive transit genetic algorithm muti-objective optimization artificial intelligence applications
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部