Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di...Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.展开更多
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa...Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.展开更多
Arabic dialect identification is essential in Natural Language Processing(NLP)and forms a critical component of applications such as machine translation,sentiment analysis,and cross-language text generation.The diffic...Arabic dialect identification is essential in Natural Language Processing(NLP)and forms a critical component of applications such as machine translation,sentiment analysis,and cross-language text generation.The difficulties in differentiating between Arabic dialects have garnered more attention in the last 10 years,particularly in social media.These difficulties result from the overlapping vocabulary of the dialects,the fluidity of online language use,and the difficulties in telling apart dialects that are closely related.Managing dialects with limited resources and adjusting to the ever-changing linguistic trends on social media platforms present additional challenges.A strong dialect recognition technique is essential to improving communication technology and cross-cultural understanding in light of the increase in social media usage.To distinguish Arabic dialects on social media,this research suggests a hybrid Deep Learning(DL)approach.The Long Short-Term Memory(LSTM)and Bidirectional Long Short-Term Memory(BiLSTM)architectures make up the model.A new textual dataset that focuses on three main dialects,i.e.,Levantine,Saudi,and Egyptian,is also available.Approximately 11,000 user-generated comments from Twitter are included in this dataset,which has been painstakingly annotated to guarantee accuracy in dialect classification.Transformers,DL models,and basic machine learning classifiers are used to conduct several tests to evaluate the performance of the suggested model.Various methodologies,including TF-IDF,word embedding,and self-attention mechanisms,are used.The suggested model fares better than other models in terms of accuracy,obtaining a remarkable 96.54%,according to the trial results.This study advances the discipline by presenting a new dataset and putting forth a practical model for Arabic dialect identification.This model may prove crucial for future work in sociolinguistic studies and NLP.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers...Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.展开更多
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b...Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China.展开更多
The evaluation of disease severity through endoscopy is pivotal in managing patients with ulcerative colitis,a condition with significant clinical implications.However,endoscopic assessment is susceptible to inherent ...The evaluation of disease severity through endoscopy is pivotal in managing patients with ulcerative colitis,a condition with significant clinical implications.However,endoscopic assessment is susceptible to inherent variations,both within and between observers,compromising the reliability of individual evaluations.This study addresses this challenge by harnessing deep learning to develop a robust model capable of discerning discrete levels of endoscopic disease severity.To initiate this endeavor,a multi-faceted approach is embarked upon.The dataset is meticulously preprocessed,enhancing the quality and discriminative features of the images through contrast limited adaptive histogram equalization(CLAHE).A diverse array of data augmentation techniques,encompassing various geometric transformations,is leveraged to fortify the dataset’s diversity and facilitate effective feature extraction.A fundamental aspect of the approach involves the strategic incorporation of transfer learning principles,harnessing a modified ResNet-50 architecture.This augmentation,informed by domain expertise,contributed significantly to enhancing the model’s classification performance.The outcome of this research endeavor yielded a highly promising model,demonstrating an accuracy rate of 86.85%,coupled with a recall rate of 82.11%and a precision rate of 89.23%.展开更多
Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Te...Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Term Frequency-Inverse Document Frequency,Word2Vec,and Bidirectional Encoder Representations from Transform-ers,to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks.The study uses feature extraction methods to assess the performance of Logistic Regression,Decision Tree,Random Forest,and Multilayer Perceptron algorithms.The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).Word2Vec’s best results were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).The highest performance was achieved using the Bidirectional Encoder Representations from the Transformers model,with Precision,Recall,F1-score,and Accuracy all reaching 0.99.This study highlights how advanced pre-trained models,such as Bidirectional Encoder Representations from Transformers,can significantly enhance the accuracy and reliability of fraud detection systems.展开更多
This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,wher...This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.展开更多
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura...Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.展开更多
The oil industries are an important part of a country’s economy.The crude oil’s price is influenced by a wide range of variables.Therefore,how accurately can countries predict its behavior and what predictors to emp...The oil industries are an important part of a country’s economy.The crude oil’s price is influenced by a wide range of variables.Therefore,how accurately can countries predict its behavior and what predictors to employ are two main questions.In this view,we propose utilizing deep learning and ensemble learning techniques to boost crude oil’s price forecasting performance.The suggested method is based on a deep learning snapshot ensemble method of the Transformer model.To examine the superiority of the proposed model,this paper compares the proposed deep learning ensemble model against different machine learning and statistical models for daily Organization of the Petroleum Exporting Countries(OPEC)oil price forecasting.Experimental results demonstrated the outperformance of the proposed method over statistical and machine learning methods.More precisely,the proposed snapshot ensemble of Transformer method achieved relative improvement in the forecasting performance compared to autoregressive integrated moving average ARIMA(1,1,1),ARIMA(0,1,1),autoregressive moving average(ARMA)(0,1),vector autoregression(VAR),random walk(RW),support vector machine(SVM),and random forests(RF)models by 99.94%,99.62%,99.87%,99.65%,7.55%,98.38%,and 99.35%,respectively,according to mean square error metric.展开更多
Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults ...Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings.展开更多
Osteoporosis is a systemic disease characterized by low bone mass,impaired bone microstruc-ture,increased bone fragility,and a higher risk of fractures.It commonly affects postmenopausal women and the elderly.Orthopan...Osteoporosis is a systemic disease characterized by low bone mass,impaired bone microstruc-ture,increased bone fragility,and a higher risk of fractures.It commonly affects postmenopausal women and the elderly.Orthopantomography,also known as panoramic radiography,is a widely used imaging technique in dental examinations due to its low cost and easy accessibility.Previous studies have shown that the mandibular cortical index(MCI)derived from orthopantomography can serve as an important indicator of osteoporosis risk.To address this,this study proposes a parallel Transformer network based on multiple instance learning.By introducing parallel modules that alleviate optimization issues and integrating multiple-instance learning with the Transformer architecture,our model effectively extracts information from image patches.Our model achieves an accuracy of 86%and an AUC score of 0.963 on an osteoporosis dataset,which demonstrates its promising and competitive performance.展开更多
Objective:Transformative learning is a learner-centered process of learning.Learners are actively engaged through critical reflection and discourse to question assumptions and expectations.The purpose of this article ...Objective:Transformative learning is a learner-centered process of learning.Learners are actively engaged through critical reflection and discourse to question assumptions and expectations.The purpose of this article is to describe a model to facilitate transformative learning in nursing education.Methods:A qualitative,exploratory,descriptive and contextual design for theory generation was selected in this study to describe a model to facilitate transformative learning in nursing education.Concept analysis of transformative learning was done in the first stage of the main study using Walker and Avant's eight step approach to clarify the conceptual identification and meaning.The results of concept analysis guided data collection in the second stage.Eleven individual agenda semi-structured interviews were conducted with nurse educators to explore and describe their perceptions regarding how transformative learning can be facilitated in nursing education.Matrix building approach was used to analyse the collected data.The third stage constituted the conceptualisation of findings from the second stage using relevant literature within the elements of practice theory.The fourth stage focused on the description and evaluation of a model to facilitate transformative learning in nursing education.Findings:Four themes and nine sub-themes emerged and were conceptualised within the six elements of practice theory namely the context,agent,recipient,dynamic,process and procedure and outcome.Conclusion:The relation statements provided the basis for model description.Reliable method was used to describe and evaluate the model.The refinement of the model by experts in model development andqualitative research was made.展开更多
Objective:There is vast literature on transformative learning,which is an important aspect of nursing education,but its meaning remains unclear.It is therefore important to clarify the meaning of transformative learni...Objective:There is vast literature on transformative learning,which is an important aspect of nursing education,but its meaning remains unclear.It is therefore important to clarify the meaning of transformative learning,identify its attributes,antecedents and consequences to increase its use in nursing education,practice and research.Methods:Walker and Avant's method was used,and the process provided a structured way to analyse the concept of'transfonnative leaming'.Nursing education dictionaries,encyclopaedias,conference papers,research articles,dissertations,theses,journal articles,thesauri and relevant books through the database library and intemet searches were reviewed.One hundred and two literature sources were reviewed,and data saturation was reached.Results:The results of the concept analysis of transformative learning within the context of nursing education identified three categories,namely,1)Antecedents as cognitive and affective perspective,democratic education principles and inspiration;2)Process through three phases,namely i)awareness through self-reflection,ii)the meaningful interactive,integrative and democratic construction process,and iii)metacognitive reasoning abilities;and 3)Outcomes.A theoretical definition of transformative learning was formulated.Theoretical validity was ensured.Conclusion:The results of the concept analysis of transformative learning were used to describe a model to facilitate transformative learning within the context of nursing education.展开更多
Our voluntary project ran in different groups of adults (healthy, depressed, schizophrenic, and clients with anxiety disorders). The study is based on analysis of personal counseling experience, where literature was...Our voluntary project ran in different groups of adults (healthy, depressed, schizophrenic, and clients with anxiety disorders). The study is based on analysis of personal counseling experience, where literature was used as a tool to disclose client's personal meanings. During our sessions, clients were observed phenomenologically, and their speach was written down. Reflecting on the qualitative data of transformative learning in language arts, we developed techniques for facilitation and disclosure of personal meanings. Grounded theory was used for data generalization: Personal educational insights and its comparison with other researchers' theoretical insights were the basis to develop the methodical system for psychological guidance and counseling and to explain it. We revealed that focus on personally important meanings during discussion after literature reading has influence on the mental state of personality and deepens the interactions with the literature art, so we suggest a spiral model to explain the methodical system of our method. Transformative learning in language arts as a method of guidance and counseling can be understood as spiritual motion by spirale. It has three levels: (1) art level (interaction with the literature); (2) psychology level (counseling); and (3) art level (interaction with the same peace of literature as in the beginning of the session, poetic summary of the session). Levels (1) and (3) mean interaction with literature art, but at the third level, this interaction has new quality, because personality has better perception of Self and more ability to connect personal meanings and literature wisdom. At the first level, we have direction from literature to Personality. At the third level, we have direction from the Self (Speaking from Within) to literature. Disclosure of personally important meanings is a key to self-understanding and poetical thinking; our developed methodical system reduces emotional tension and strengthens interconnectedness between inner and outer world and improves poetical understanding. In this paper, the methodical system of transformative learning and guidance is discussed.展开更多
Based on the previous case study in promoting transformative learning of college English teachers,who participated in a three-month online training courses,the article made a further research and concluded four strate...Based on the previous case study in promoting transformative learning of college English teachers,who participated in a three-month online training courses,the article made a further research and concluded four strategies on promoting transformative learning of college English Teachers.展开更多
In recent years there has been a proliferation of studies demonstrating the value of teaching abroad as much for its benefits for the training and professional development of these teachers,as for its impact and benef...In recent years there has been a proliferation of studies demonstrating the value of teaching abroad as much for its benefits for the training and professional development of these teachers,as for its impact and beneficial effects on students.This article uses transformative learning as a theoretical framework to interpret the achievements associated with the experience of teaching abroad,and to identify and analyze different motivational factors,adjustments,changes,challenges,and perspectives of Chinese teachers linked to a Confucius Institute in Spain,through a qualitative analysis of narratives elicited through in-depth interviews and focus groups.It highlights the role and potential of the transnational,intercultural experience of these teachers as authentic actors in the part played by the Confucius Institutes in language teaching and the promotion of Chinese culture,indicating many issues including language difficulties,professional adjustment,ideas about education,beliefs of teachers and the management of the program.展开更多
Strengthening moral learning may become available to us by bringing phronesis and transformative learning in a common theoretical space. For both Aristotle and Mezirow, the exercise of morality, or rising to the stand...Strengthening moral learning may become available to us by bringing phronesis and transformative learning in a common theoretical space. For both Aristotle and Mezirow, the exercise of morality, or rising to the standard of moral choice, decision, and action, is not the result of an intuitive achievement or a sudden understanding of a morally demanding situation but a lifelong affair. Our strategy here addresses three aims: Firstly, to invoke and reclaim the endemic bond between education in the broader sense of paideia and the significant role that reeds to be re-ascribed to moral education. This allows a turn towards qualitative features and makes room for an inclusion of moral education, or values education, within education. Secondly, to portray the exercise of autonomy, choice, and judgment as a result of paideutic development; both theories share the assumption that moral learning rests on constant reflection upon past experiences and the zetesis of future goals. Thirdly, to focus on the way one reclaims the right to exercise judgment, whenever this is required. A joint study of the two theories may enlighten the content of this lifelong reflective procedure.展开更多
基金Researchers Supporting Project Number(RSPD2024R 553),King Saud University,Riyadh,Saudi Arabia.
文摘Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed.
文摘Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Arabic dialect identification is essential in Natural Language Processing(NLP)and forms a critical component of applications such as machine translation,sentiment analysis,and cross-language text generation.The difficulties in differentiating between Arabic dialects have garnered more attention in the last 10 years,particularly in social media.These difficulties result from the overlapping vocabulary of the dialects,the fluidity of online language use,and the difficulties in telling apart dialects that are closely related.Managing dialects with limited resources and adjusting to the ever-changing linguistic trends on social media platforms present additional challenges.A strong dialect recognition technique is essential to improving communication technology and cross-cultural understanding in light of the increase in social media usage.To distinguish Arabic dialects on social media,this research suggests a hybrid Deep Learning(DL)approach.The Long Short-Term Memory(LSTM)and Bidirectional Long Short-Term Memory(BiLSTM)architectures make up the model.A new textual dataset that focuses on three main dialects,i.e.,Levantine,Saudi,and Egyptian,is also available.Approximately 11,000 user-generated comments from Twitter are included in this dataset,which has been painstakingly annotated to guarantee accuracy in dialect classification.Transformers,DL models,and basic machine learning classifiers are used to conduct several tests to evaluate the performance of the suggested model.Various methodologies,including TF-IDF,word embedding,and self-attention mechanisms,are used.The suggested model fares better than other models in terms of accuracy,obtaining a remarkable 96.54%,according to the trial results.This study advances the discipline by presenting a new dataset and putting forth a practical model for Arabic dialect identification.This model may prove crucial for future work in sociolinguistic studies and NLP.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
基金supported in part by NSFC (62102099, U22A2054, 62101594)in part by the Pearl River Talent Recruitment Program (2021QN02S643)+9 种基金Guangzhou Basic Research Program (2023A04J1699)in part by the National Research Foundation, SingaporeInfocomm Media Development Authority under its Future Communications Research Development ProgrammeDSO National Laboratories under the AI Singapore Programme under AISG Award No AISG2-RP-2020-019Energy Research Test-Bed and Industry Partnership Funding Initiative, Energy Grid (EG) 2.0 programmeDesCartes and the Campus for Research Excellence and Technological Enterprise (CREATE) programmeMOE Tier 1 under Grant RG87/22in part by the Singapore University of Technology and Design (SUTD) (SRG-ISTD-2021- 165)in part by the SUTD-ZJU IDEA Grant SUTD-ZJU (VP) 202102in part by the Ministry of Education, Singapore, through its SUTD Kickstarter Initiative (SKI 20210204)。
文摘Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses.
基金supported in part by the Beijing Natural Science Foundation(Grant No.8222051)the National Key R&D Program of China(Grant No.2022YFC3004103)+2 种基金the National Natural Foundation of China(Grant Nos.42275003 and 42275012)the China Meteorological Administration Key Innovation Team(Grant Nos.CMA2022ZD04 and CMA2022ZD07)the Beijing Science and Technology Program(Grant No.Z221100005222012).
文摘Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China.
文摘The evaluation of disease severity through endoscopy is pivotal in managing patients with ulcerative colitis,a condition with significant clinical implications.However,endoscopic assessment is susceptible to inherent variations,both within and between observers,compromising the reliability of individual evaluations.This study addresses this challenge by harnessing deep learning to develop a robust model capable of discerning discrete levels of endoscopic disease severity.To initiate this endeavor,a multi-faceted approach is embarked upon.The dataset is meticulously preprocessed,enhancing the quality and discriminative features of the images through contrast limited adaptive histogram equalization(CLAHE).A diverse array of data augmentation techniques,encompassing various geometric transformations,is leveraged to fortify the dataset’s diversity and facilitate effective feature extraction.A fundamental aspect of the approach involves the strategic incorporation of transfer learning principles,harnessing a modified ResNet-50 architecture.This augmentation,informed by domain expertise,contributed significantly to enhancing the model’s classification performance.The outcome of this research endeavor yielded a highly promising model,demonstrating an accuracy rate of 86.85%,coupled with a recall rate of 82.11%and a precision rate of 89.23%.
文摘Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Term Frequency-Inverse Document Frequency,Word2Vec,and Bidirectional Encoder Representations from Transform-ers,to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks.The study uses feature extraction methods to assess the performance of Logistic Regression,Decision Tree,Random Forest,and Multilayer Perceptron algorithms.The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).Word2Vec’s best results were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).The highest performance was achieved using the Bidirectional Encoder Representations from the Transformers model,with Precision,Recall,F1-score,and Accuracy all reaching 0.99.This study highlights how advanced pre-trained models,such as Bidirectional Encoder Representations from Transformers,can significantly enhance the accuracy and reliability of fraud detection systems.
基金funded by the project of the China Geological Survey(DD20211364)the Science and Technology Talent Program of Ministry of Natural Resources of China(grant number 121106000000180039–2201)。
文摘This study makes a significant progress in addressing the challenges of short-term slope displacement prediction in the Universal Landslide Monitoring Program,an unprecedented disaster mitigation program in China,where lots of newly established monitoring slopes lack sufficient historical deformation data,making it difficult to extract deformation patterns and provide effective predictions which plays a crucial role in the early warning and forecasting of landslide hazards.A slope displacement prediction method based on transfer learning is therefore proposed.Initially,the method transfers the deformation patterns learned from slopes with relatively rich deformation data by a pre-trained model based on a multi-slope integrated dataset to newly established monitoring slopes with limited or even no useful data,thus enabling rapid and efficient predictions for these slopes.Subsequently,as time goes on and monitoring data accumulates,fine-tuning of the pre-trained model for individual slopes can further improve prediction accuracy,enabling continuous optimization of prediction results.A case study indicates that,after being trained on a multi-slope integrated dataset,the TCN-Transformer model can efficiently serve as a pretrained model for displacement prediction at newly established monitoring slopes.The three-day average RMSE is significantly reduced by 34.6%compared to models trained only on individual slope data,and it also successfully predicts the majority of deformation peaks.The fine-tuned model based on accumulated data on the target newly established monitoring slope further reduced the three-day RMSE by 37.2%,demonstrating a considerable predictive accuracy.In conclusion,taking advantage of transfer learning,the proposed slope displacement prediction method effectively utilizes the available data,which enables the rapid deployment and continual refinement of displacement predictions on newly established monitoring slopes.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science and technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2).
文摘Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.
文摘The oil industries are an important part of a country’s economy.The crude oil’s price is influenced by a wide range of variables.Therefore,how accurately can countries predict its behavior and what predictors to employ are two main questions.In this view,we propose utilizing deep learning and ensemble learning techniques to boost crude oil’s price forecasting performance.The suggested method is based on a deep learning snapshot ensemble method of the Transformer model.To examine the superiority of the proposed model,this paper compares the proposed deep learning ensemble model against different machine learning and statistical models for daily Organization of the Petroleum Exporting Countries(OPEC)oil price forecasting.Experimental results demonstrated the outperformance of the proposed method over statistical and machine learning methods.More precisely,the proposed snapshot ensemble of Transformer method achieved relative improvement in the forecasting performance compared to autoregressive integrated moving average ARIMA(1,1,1),ARIMA(0,1,1),autoregressive moving average(ARMA)(0,1),vector autoregression(VAR),random walk(RW),support vector machine(SVM),and random forests(RF)models by 99.94%,99.62%,99.87%,99.65%,7.55%,98.38%,and 99.35%,respectively,according to mean square error metric.
基金supported by theResearchers Supporting Project No.RSP-2021/14,King Saud University,Riyadh,Saudi Arabia.
文摘Contactless verification is possible with iris biometric identification,which helps prevent infections like COVID-19 from spreading.Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses,replayed the video,and print attacks.The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness.Seven assorted feature creation ways are studied in the presented solutions,and these created features are explored for the training of eight distinct machine learning classifiers and ensembles.The predicted iris liveness identification variants are evaluated using recall,F-measure,precision,accuracy,APCER,BPCER,and ACER.Three standard datasets were used in the investigation.The main contribution of our study is achieving a good accuracy of 99.18%with a smaller feature vector.The fragmental coefficients of Haar transformed iris image of size 8∗8 utilizing random forest algorithm showed superior iris liveness detection with reduced featured vector size(64 features).Random forest gave 99.18%accuracy.Additionally,conduct an extensive experiment on cross datasets for detailed analysis.The results of our experiments showthat the iris biometric template is decreased in size tomake the proposed framework suitable for algorithmic verification in real-time environments and settings.
文摘Osteoporosis is a systemic disease characterized by low bone mass,impaired bone microstruc-ture,increased bone fragility,and a higher risk of fractures.It commonly affects postmenopausal women and the elderly.Orthopantomography,also known as panoramic radiography,is a widely used imaging technique in dental examinations due to its low cost and easy accessibility.Previous studies have shown that the mandibular cortical index(MCI)derived from orthopantomography can serve as an important indicator of osteoporosis risk.To address this,this study proposes a parallel Transformer network based on multiple instance learning.By introducing parallel modules that alleviate optimization issues and integrating multiple-instance learning with the Transformer architecture,our model effectively extracts information from image patches.Our model achieves an accuracy of 86%and an AUC score of 0.963 on an osteoporosis dataset,which demonstrates its promising and competitive performance.
基金The research study was financially supported by the researcher and the partial funding of Supervisor bursaries as awarded by the University of Johannesburg
文摘Objective:Transformative learning is a learner-centered process of learning.Learners are actively engaged through critical reflection and discourse to question assumptions and expectations.The purpose of this article is to describe a model to facilitate transformative learning in nursing education.Methods:A qualitative,exploratory,descriptive and contextual design for theory generation was selected in this study to describe a model to facilitate transformative learning in nursing education.Concept analysis of transformative learning was done in the first stage of the main study using Walker and Avant's eight step approach to clarify the conceptual identification and meaning.The results of concept analysis guided data collection in the second stage.Eleven individual agenda semi-structured interviews were conducted with nurse educators to explore and describe their perceptions regarding how transformative learning can be facilitated in nursing education.Matrix building approach was used to analyse the collected data.The third stage constituted the conceptualisation of findings from the second stage using relevant literature within the elements of practice theory.The fourth stage focused on the description and evaluation of a model to facilitate transformative learning in nursing education.Findings:Four themes and nine sub-themes emerged and were conceptualised within the six elements of practice theory namely the context,agent,recipient,dynamic,process and procedure and outcome.Conclusion:The relation statements provided the basis for model description.Reliable method was used to describe and evaluate the model.The refinement of the model by experts in model development andqualitative research was made.
基金The research study was financially supported by the researcher and the partial funding of Supervisor bursaries as awarded by the University of Johannesburg.
文摘Objective:There is vast literature on transformative learning,which is an important aspect of nursing education,but its meaning remains unclear.It is therefore important to clarify the meaning of transformative learning,identify its attributes,antecedents and consequences to increase its use in nursing education,practice and research.Methods:Walker and Avant's method was used,and the process provided a structured way to analyse the concept of'transfonnative leaming'.Nursing education dictionaries,encyclopaedias,conference papers,research articles,dissertations,theses,journal articles,thesauri and relevant books through the database library and intemet searches were reviewed.One hundred and two literature sources were reviewed,and data saturation was reached.Results:The results of the concept analysis of transformative learning within the context of nursing education identified three categories,namely,1)Antecedents as cognitive and affective perspective,democratic education principles and inspiration;2)Process through three phases,namely i)awareness through self-reflection,ii)the meaningful interactive,integrative and democratic construction process,and iii)metacognitive reasoning abilities;and 3)Outcomes.A theoretical definition of transformative learning was formulated.Theoretical validity was ensured.Conclusion:The results of the concept analysis of transformative learning were used to describe a model to facilitate transformative learning within the context of nursing education.
文摘Our voluntary project ran in different groups of adults (healthy, depressed, schizophrenic, and clients with anxiety disorders). The study is based on analysis of personal counseling experience, where literature was used as a tool to disclose client's personal meanings. During our sessions, clients were observed phenomenologically, and their speach was written down. Reflecting on the qualitative data of transformative learning in language arts, we developed techniques for facilitation and disclosure of personal meanings. Grounded theory was used for data generalization: Personal educational insights and its comparison with other researchers' theoretical insights were the basis to develop the methodical system for psychological guidance and counseling and to explain it. We revealed that focus on personally important meanings during discussion after literature reading has influence on the mental state of personality and deepens the interactions with the literature art, so we suggest a spiral model to explain the methodical system of our method. Transformative learning in language arts as a method of guidance and counseling can be understood as spiritual motion by spirale. It has three levels: (1) art level (interaction with the literature); (2) psychology level (counseling); and (3) art level (interaction with the same peace of literature as in the beginning of the session, poetic summary of the session). Levels (1) and (3) mean interaction with literature art, but at the third level, this interaction has new quality, because personality has better perception of Self and more ability to connect personal meanings and literature wisdom. At the first level, we have direction from literature to Personality. At the third level, we have direction from the Self (Speaking from Within) to literature. Disclosure of personally important meanings is a key to self-understanding and poetical thinking; our developed methodical system reduces emotional tension and strengthens interconnectedness between inner and outer world and improves poetical understanding. In this paper, the methodical system of transformative learning and guidance is discussed.
基金supported by Educational Commission of Jilin Province of China(Grant No.JJKH20190782SK)supported by the Jilin Vocational and Technical Education Association(Grant No.2018XHY115).
文摘Based on the previous case study in promoting transformative learning of college English teachers,who participated in a three-month online training courses,the article made a further research and concluded four strategies on promoting transformative learning of college English Teachers.
文摘In recent years there has been a proliferation of studies demonstrating the value of teaching abroad as much for its benefits for the training and professional development of these teachers,as for its impact and beneficial effects on students.This article uses transformative learning as a theoretical framework to interpret the achievements associated with the experience of teaching abroad,and to identify and analyze different motivational factors,adjustments,changes,challenges,and perspectives of Chinese teachers linked to a Confucius Institute in Spain,through a qualitative analysis of narratives elicited through in-depth interviews and focus groups.It highlights the role and potential of the transnational,intercultural experience of these teachers as authentic actors in the part played by the Confucius Institutes in language teaching and the promotion of Chinese culture,indicating many issues including language difficulties,professional adjustment,ideas about education,beliefs of teachers and the management of the program.
文摘Strengthening moral learning may become available to us by bringing phronesis and transformative learning in a common theoretical space. For both Aristotle and Mezirow, the exercise of morality, or rising to the standard of moral choice, decision, and action, is not the result of an intuitive achievement or a sudden understanding of a morally demanding situation but a lifelong affair. Our strategy here addresses three aims: Firstly, to invoke and reclaim the endemic bond between education in the broader sense of paideia and the significant role that reeds to be re-ascribed to moral education. This allows a turn towards qualitative features and makes room for an inclusion of moral education, or values education, within education. Secondly, to portray the exercise of autonomy, choice, and judgment as a result of paideutic development; both theories share the assumption that moral learning rests on constant reflection upon past experiences and the zetesis of future goals. Thirdly, to focus on the way one reclaims the right to exercise judgment, whenever this is required. A joint study of the two theories may enlighten the content of this lifelong reflective procedure.