期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的网络评论文本情感分析方法
1
作者
李大一
王友国
翟其清
《建模与仿真》
2024年第5期5372-5381,共10页
在自然语言处理的众多研究领域中,文本的情感层面分析已成为一个备受瞩目的课题。针对情感分析任务中存在的文本向量表示语义不佳和特征提取不足导致分类不准确的问题,本研究提出了一种融合了RoBERTa-wwm-ext模型和多头注意力机制的深...
在自然语言处理的众多研究领域中,文本的情感层面分析已成为一个备受瞩目的课题。针对情感分析任务中存在的文本向量表示语义不佳和特征提取不足导致分类不准确的问题,本研究提出了一种融合了RoBERTa-wwm-ext模型和多头注意力机制的深度学习文本分类框架RoBERTa-BiLSTM-Mutil-Head-Attention(RBM)。模型最初利用预训练的RoBERTa-wwm-ext语言模型捕获文本的动态特性;利用双向长短期记忆网络Bi-LSTM进一步提取文本更深层次的语义关系,将最后一个时序输出作为特征向量输入到多头注意力机制层;最后通过全连接层神经网络得到文本分类结果。经过一系列模型的对比测试,本研究提出的基于RBM的分类模型在ChnSentiCorp的网络评论文本集上实现了更高的准确度、精确率、召回率和F1值,且模型较好地提取了文本中字词的特征,提高了中文评论文本情感分析的效果。
展开更多
关键词
文本情感分析
RoBERTa-wwm-ext
Bi-LSTM
mutil-head-attention
原文传递
题名
基于深度学习的网络评论文本情感分析方法
1
作者
李大一
王友国
翟其清
机构
南京邮电大学理学院
出处
《建模与仿真》
2024年第5期5372-5381,共10页
基金
国家自然科学基金项目(62071248)、国家自然科学基金项目(62201284)。
文摘
在自然语言处理的众多研究领域中,文本的情感层面分析已成为一个备受瞩目的课题。针对情感分析任务中存在的文本向量表示语义不佳和特征提取不足导致分类不准确的问题,本研究提出了一种融合了RoBERTa-wwm-ext模型和多头注意力机制的深度学习文本分类框架RoBERTa-BiLSTM-Mutil-Head-Attention(RBM)。模型最初利用预训练的RoBERTa-wwm-ext语言模型捕获文本的动态特性;利用双向长短期记忆网络Bi-LSTM进一步提取文本更深层次的语义关系,将最后一个时序输出作为特征向量输入到多头注意力机制层;最后通过全连接层神经网络得到文本分类结果。经过一系列模型的对比测试,本研究提出的基于RBM的分类模型在ChnSentiCorp的网络评论文本集上实现了更高的准确度、精确率、召回率和F1值,且模型较好地提取了文本中字词的特征,提高了中文评论文本情感分析的效果。
关键词
文本情感分析
RoBERTa-wwm-ext
Bi-LSTM
mutil-head-attention
Keywords
Text Emotion Analysis
RoBERTa-wwm-ext
Bidirectional LSTM
mutil-head-attention
分类号
G63 [文化科学—教育学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的网络评论文本情感分析方法
李大一
王友国
翟其清
《建模与仿真》
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部