期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Learning Semantic Lexicons Using Graph Mutual Reinforcement Based Bootstrapping 被引量:3
1
作者 ZHANG Qi QIU Xi-Peng HUANG Xuan-Jing WU Li-De 《自动化学报》 EI CSCD 北大核心 2008年第10期1257-1261,共5页
这份报纸论述一个方法基于图用一个新引导方法学习语义词典相互的加强(GMR ) 。途径使用仅仅未标记的数据和一些种子词为每个语义范畴学习新词。与另外的引导方法不同,我们使用基于 GMR 的引导排序候选人词和模式。试验性的结果证明基... 这份报纸论述一个方法基于图用一个新引导方法学习语义词典相互的加强(GMR ) 。途径使用仅仅未标记的数据和一些种子词为每个语义范畴学习新词。与另外的引导方法不同,我们使用基于 GMR 的引导排序候选人词和模式。试验性的结果证明基于 GMR 的引导途径在在里面域数据和外面域数据两个都超过存在算法。而且,它证明结果取决于语料库而且质量的尺寸不仅。 展开更多
关键词 图象加强 自动化系统 设计方案 语义范畴
下载PDF
一种双通道半监督网络表示学习模型
2
作者 杜航原 谢富中 +1 位作者 王文剑 白亮 《大数据》 2024年第4期106-120,共15页
在半监督网络表示学习中,节点标签对于网络在不同空间中映射关系的建立具有重要指导意义。然而在很多实际任务中,可用标签信息往往比较有限或难以获取,这导致在学习网络低维表示的过程中无法提供充分有效的监督。针对这一问题,提出了一... 在半监督网络表示学习中,节点标签对于网络在不同空间中映射关系的建立具有重要指导意义。然而在很多实际任务中,可用标签信息往往比较有限或难以获取,这导致在学习网络低维表示的过程中无法提供充分有效的监督。针对这一问题,提出了一种双通道半监督网络表示学习模型,该模型以自编码器为基本框架,由自监督和半监督两个信息传递通道构成。自监督信号与标签信息分别在两个通道中对网络表示映射关系的建立提供指导,同时二者之间形成信息互补与增强。考虑到两个通道间可能存在信息冗余,在互信息视角下设计了冗余识别与消除机制。在此基础上,构造了一体化优化模型,实现自监督学习与半监督学习的协同,使学习到的网络表示更好地捕捉和保持网络的结构和特性。在真实数据集上的实验结果表明,提出的模型学习的网络表示在节点分类、聚类和可视化等任务中能够获得优于基线方法的性能。 展开更多
关键词 半监督网络表示学习 标签信息 自监督学习 互信息 图神经网络
下载PDF
车联网中基于有向无环图区块链的个性化联邦互蒸馏学习方法
3
作者 黄晓舸 吴雨航 +2 位作者 尹宏博 梁承超 陈前斌 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2821-2830,共10页
联邦学习(FL)作为一种分布式训练方法,在车联网(IoV)中得到了广泛应用。区别于传统机器学习,FL允许智能网联车辆(CAVs)通过共享模型而非原始数据来协同训练全局模型,从而保护CAV隐私和数据安全。为了提升联邦学习模型精度,降低通信开销... 联邦学习(FL)作为一种分布式训练方法,在车联网(IoV)中得到了广泛应用。区别于传统机器学习,FL允许智能网联车辆(CAVs)通过共享模型而非原始数据来协同训练全局模型,从而保护CAV隐私和数据安全。为了提升联邦学习模型精度,降低通信开销,该文首先提出一种基于有向无环图(DAG)区块链和CAVs的IoV架构,分别负责全局模型共享和本地模型训练。其次,设计了一种基于DAG区块链的异步联邦互蒸馏学习(DAFML)算法在本地同时训练教师和学生模型,教师模型的专业级网络结构可取得更高精度,学生模型的轻量级网络结构可降低通信开销,并采用互蒸馏学习使教师模型和学生模型从互相转移的软标签中学习知识以更新模型。此外,为了进一步提高模型精度,基于全局训练轮次和模型精度设定个性化权值来调节互蒸馏占比。仿真结果表明,DAFML算法在模型精度和蒸馏比率方面优于其他比较算法。 展开更多
关键词 联邦学习 互蒸馏 有向无环图 个性化权值
下载PDF
基于信息瓶颈理论的鲁棒少标签虚假信息检测
4
作者 王吉宏 赵书庆 +3 位作者 罗敏楠 刘欢 赵翔 郑庆华 《计算机研究与发展》 EI CSCD 北大核心 2024年第7期1629-1642,共14页
虚假信息检测对于维护网络舆情安全具有重要意义.研究表明,虚假信息在信息内容和传播结构上较真实信息具有显著不同.为此,近年来研究致力于挖掘信息内容和信息传播结构,提升虚假信息检测的精准性.然而,现实场景中虚假信息的标注往往需... 虚假信息检测对于维护网络舆情安全具有重要意义.研究表明,虚假信息在信息内容和传播结构上较真实信息具有显著不同.为此,近年来研究致力于挖掘信息内容和信息传播结构,提升虚假信息检测的精准性.然而,现实场景中虚假信息的标注往往需要大量地与官方报道等比照分析,代价较为昂贵,现有方法对标注信息的过分依赖限制了其实际应用.此外,虚假信息传播者可通过在评论区控评等手段恶意操纵虚假信息的传播,增加了虚假信息检测的难度.为此,基于信息瓶颈理论提出一种鲁棒少标签虚假信息检测方法,通过互信息最大化技术融合无标注样本信息,克服虚假信息检测对标签的过分依赖问题;并通过对抗训练的策略模拟虚假信息传播者的恶意操纵行为,基于信息瓶颈理论学习鲁棒的虚假信息表征,在高质量表征虚假信息的同时消除恶意操纵行为的影响.实验表明,该方法在少标签识别和鲁棒性2个方面均取得了优于基准方法的效果. 展开更多
关键词 虚假信息检测 图神经网络 互信息 图表示学习 鲁棒表示学习 少标签学习
下载PDF
近似图引导的演化贝叶斯网络结构学习算法
5
作者 曾奕博 钱鸿 +2 位作者 李丙栋 窦亮 周爱民 《小型微型计算机系统》 CSCD 北大核心 2024年第1期52-61,共10页
贝叶斯网络结构学习是贝叶斯网络推理及应用的基础.搜索高质量的节点序是贝叶斯网络结构学习的一类重要方法.针对在节点序空间中,搜索高质量节点序存在的难以高效、准确评估解的问题,本文提出了一种近似图引导的演化贝叶斯网络结构学习... 贝叶斯网络结构学习是贝叶斯网络推理及应用的基础.搜索高质量的节点序是贝叶斯网络结构学习的一类重要方法.针对在节点序空间中,搜索高质量节点序存在的难以高效、准确评估解的问题,本文提出了一种近似图引导的演化贝叶斯网络结构学习算法.首先,该算法利用互信息构建无向近似图;其次,该算法通过结合节点序和无向近似图构造有向图结构,将其贝叶斯信息准则评分作为节点序的适应度来高效评估节点序,并在演化优化的框架下,使用提出的基于Kendall Tau Distance的交叉算子和基于逆度的变异算子搜索最优节点序;最后,将搜索到的最优节点序输入K2算法得到其对应的贝叶斯网络结构.在4种不同规模网络上的实验结果表明,该算法在收敛时间和准确度之间取得了较好的平衡,其评分相较于对比算法中的次优解分别提升了10.91%、12.28%、53.96%、10.87%. 展开更多
关键词 贝叶斯网络 结构学习 演化算法 近似图 互信息 K2算法
下载PDF
基于互信息最大化和对比损失的多模态情绪识别模型
6
作者 黎倩尔 黄沛杰 +3 位作者 陈佳炜 吴嘉林 徐禹洪 林丕源 《中文信息学报》 CSCD 北大核心 2024年第7期137-146,共10页
多模态的对话情绪识别(Emotion Recognition in Conversation,ERC)是构建情感对话系统的关键。近年来,基于图的融合方法在会话中动态聚合多模态上下文特征,提高了模型在多模态对话情绪识别方面的性能。然而,这些方法都没有充分保留和利... 多模态的对话情绪识别(Emotion Recognition in Conversation,ERC)是构建情感对话系统的关键。近年来,基于图的融合方法在会话中动态聚合多模态上下文特征,提高了模型在多模态对话情绪识别方面的性能。然而,这些方法都没有充分保留和利用输入数据中的有价值的信息。具体地说,它们都没有保留从输入到融合结果的任务相关信息,并且忽略了标签本身蕴含的信息。为了解决上述问题,该文提出了一种基于互信息最大化和对比损失的多模态对话情绪识别模型(Multimodal ERC with Mutual Information Maximization and Contrastive Loss,MMIC)。模型通过在输入级和融合级上分级最大化模态之间的互信息(Mutual Information),使任务相关信息在融合过程中得以保存,从而生成更丰富的多模态表示。该文还在基于图的动态融合网络中引入了监督对比学习(Supervised Contrastive Learning),通过充分利用标签蕴含的信息,使不同情绪相互排斥,增强了模型识别相似情绪的能力。在两个英文和一个中文的公共数据集上的大量实验证明了该文所提出模型的有效性和优越性。此外,在所提出模型上进行的案例探究有效地证实了模型可以有效保留任务相关信息,更好地区分出相似的情绪。消融实验和可视化结果证明了模型中每个模块的有效性。 展开更多
关键词 多模态对话情绪识别 图卷积网络 互信息 监督对比学习
下载PDF
基于价值函数分解和通信学习机制的异构多智能体强化学习方法
7
作者 杜威 丁世飞 +2 位作者 郭丽丽 张健 丁玲 《计算机学报》 EI CAS CSCD 北大核心 2024年第6期1304-1322,共19页
许多现实世界的系统可以被建模为多智能体系统,多智能体强化学习为开发这些系统提供了一种有效的方法,其中基于集中训练与分散执行范式的价值函数分解方法得到了广泛的研究.然而现有的价值分解方法一般缺乏通信机制,在处理需要通信学习... 许多现实世界的系统可以被建模为多智能体系统,多智能体强化学习为开发这些系统提供了一种有效的方法,其中基于集中训练与分散执行范式的价值函数分解方法得到了广泛的研究.然而现有的价值分解方法一般缺乏通信机制,在处理需要通信学习的多智能体任务时表现不佳.同时,目前大多数通信机制都是针对同构多智能体环境设计的,没有考虑异构多智能体场景.在异构场景中,由于智能体动作空间或观测空间的异构性,智能体之间的信息共享并不直接.如果不能对智能体的异构性进行有效地建模处理,通信机制将变得无效,甚至会影响多智能体的协作性能.为了应对这些挑战,本文提出一个融合价值函数分解和通信学习机制的异构多智能体强化学习框架.具体地:(1)与采用同构图卷积网络的方法不同,该框架利用异构图卷积网络融合智能体的异构特征信息得到有效的嵌入;(2)利用通信学习模块获得的嵌入信息和局部观测历史计算每个智能体的动作价值,以选择和协调智能体的动作;(3)通过设计的互信息损失函数和价值函数分解模块的损失函数联合训练,能够有效地训练整个方法.本文首先在两个异构多智能体平台上进行实验,实验结果表明该方法能学到比基线方法更有效的策略,在两个平台上相比基线方法分别提高了 13%的平均奖励值和24%的平均胜率.此外,在交通信号控制场景中验证了该方法在现实系统中的可行性. 展开更多
关键词 价值函数分解 异构多智能体强化学习 通信机制 图神经网络 互信息 交通信号控制
下载PDF
基于多方嵌入的逐步实体对齐方法
8
作者 刘雪丽 李燕 +1 位作者 李春雨 刘悦悦 《现代电子技术》 北大核心 2024年第13期138-143,共6页
大多数实体对齐方法对知识图谱信息的利用不够充分,没有考虑实体间的互相选择,忽略了现实生活中很多实体在对方知识图谱中不存在等价实体的事实。针对以上问题,提出一种基于多方嵌入的逐步实体对齐方法。该方法对三元组信息、邻域信息... 大多数实体对齐方法对知识图谱信息的利用不够充分,没有考虑实体间的互相选择,忽略了现实生活中很多实体在对方知识图谱中不存在等价实体的事实。针对以上问题,提出一种基于多方嵌入的逐步实体对齐方法。该方法对三元组信息、邻域信息、实体名称的语义信息和字符串信息进行多方嵌入生成相似度矩阵,再通过所提出的逐步实体对齐算法将目前彼此最为相似且相似度大于最小相似度阈值的两个实体进行匹配,直到剩余所有实体的相似度都不大于最小相似度阈值时停止匹配,在确保等价实体准确匹配的前提下,减小不存在等价实体时发生错误匹配的概率。在DBP15K数据集上进行了三项实验,结果证明了该方法和逐步实体对齐算法的有效性,以及多方嵌入中每个模块的必要性。 展开更多
关键词 知识图谱 实体对齐 多方嵌入 逐步实体对齐算法 互相选择 最小相似度阈值 知识图谱嵌入
下载PDF
融合异构图神经网络的时间卷积知识追踪方法
9
作者 张文奇 王海瑞 朱贵富 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2823-2829,共7页
知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural N... 知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural Network,HG-TCKT),将知识追踪任务重述为基于异构图神经网络的时序边分类问题.具体来说,首先将学习记录构建成包含3种节点类型(学生,习题和技能),2种边类型(学生-习题和习题-技能)的异构图数据,异构图描述了学生交互记录中实体类型之间的丰富关系,使用异构图神经网络缓解交互稀疏的问题,引入异构互注意力机制捕捉不同类型节点间的交互关系,提取不同类型节点的高阶特征.将学生节点和习题节点表征拼接,构造边(学生-习题)的表征.最后,使用时间卷积网络捕捉学生历史交互序列的时序依赖关系从而进行预测.在2个真实教育数据集进行实验证明,HG-TCKT相比当前主流知识追踪方法有更好的预测效果. 展开更多
关键词 知识追踪 异构图神经网络 异构互注意力机制 特征拼接 时间卷积网络
下载PDF
基于相互学习的短时交通流预测研究
10
作者 刘忠伟 李萍 +3 位作者 周盛 闫豆豆 李颖 安毅生 《计算机测量与控制》 2024年第4期166-173,共8页
交通流预测是智能交通系统(ITS)的核心,其中时空特性是最主要的特征;由于不同道路之间存在复杂的空间相关性和时间依赖性,因此交通流预测成为一项具有挑战性的任务;目前,基于图卷积神经网络的预测方法在网络局部以及整体的特征感知和提... 交通流预测是智能交通系统(ITS)的核心,其中时空特性是最主要的特征;由于不同道路之间存在复杂的空间相关性和时间依赖性,因此交通流预测成为一项具有挑战性的任务;目前,基于图卷积神经网络的预测方法在网络局部以及整体的特征感知和提取方面,仍存在优化空间;为了解决以上问题,提出了一种基于图神经网络的优化模型(DMCRNN),该模型以DCRNN为基准模型,利用相互学习策略对其进行优化;在训练过程中,两个DCRNN网络之间相互学习、相互指导,以此来增强每个网络的特征学习能力;在METR-LA和PEMS-BAY两个真实数据集上验证优化策略的有效性;结果表明,经过优化后的模型预测误差显著降低,在两个数据集上一小时的MAE与DCRNN相比分别降低了0.15和0.12,即相互学习优化策略具有较好的性能。 展开更多
关键词 交通流预测 时空特性 图神经网络 知识蒸馏 相互学习
下载PDF
社交影响增强的图神经网络推荐方法
11
作者 代星月 叶海良 曹飞龙 《模式识别与人工智能》 EI CSCD 北大核心 2024年第3期221-230,共10页
随着在线社交平台的发展,社交推荐已成为推荐系统中的一个重要任务.然而,用户间的社交关系通常具有稀疏性,这在一定程度上限制推荐系统的性能.为此,文中提出社交影响增强的图神经网络推荐方法,旨在利用用户之间的隐式社交关系增强社交... 随着在线社交平台的发展,社交推荐已成为推荐系统中的一个重要任务.然而,用户间的社交关系通常具有稀疏性,这在一定程度上限制推荐系统的性能.为此,文中提出社交影响增强的图神经网络推荐方法,旨在利用用户之间的隐式社交关系增强社交推荐的效果.首先,分析用户与物品之间的交互数据,揭示隐含的社交关系,重构用户间的社交图.在此基础上,利用互信息最大化方法,有效融合社交图的全局特征与用户的局部特征.同时,将可学习机制融入图注意力网络中,充分捕获用户和物品间的交互信息.最后,提出一种改进的贝叶斯个性化排序损失,为评分预测任务提供准确的用户特征表示和物品特征表示.在3个公开数据集上的实验表明,文中方法性能较优. 展开更多
关键词 图神经网络 表示学习 互信息最大化 社交推荐
下载PDF
基于课程学习权重集成的贝叶斯结构学习算法研究
12
作者 刘凯越 周鋆 《应用科技》 CAS 2024年第1期1-9,共9页
从大量复杂的数据中学习贝叶斯网络(Bayesian network,BN)一直是一个难点问题,本文借鉴课程学习的思想,引入了一种适合于BN中节点之间互相影响程度的测量,然后划分课程阶段,分阶段构造无向图骨架,并利用优化函数对骨架进行优化;通过集... 从大量复杂的数据中学习贝叶斯网络(Bayesian network,BN)一直是一个难点问题,本文借鉴课程学习的思想,引入了一种适合于BN中节点之间互相影响程度的测量,然后划分课程阶段,分阶段构造无向图骨架,并利用优化函数对骨架进行优化;通过集成策略,将各个集成学习结果所得到的课程权重进行集合,并通过边过滤来减少错误边的出现;最后,通过爬山搜索构建BN结构。实验结果表明,在4个标准数据集上,本文所提方法具有较高的精确度和稳定性。与多种传统贝叶斯结构学习(Bayesian network structure learning,BNSL)方法相比,本文所提方法性能平均提高了37.18%。本文分析结果可为BNSL的增量学习过程进一步提供参考。 展开更多
关键词 贝叶斯网络 结构学习 课程学习 权重 边约束 权重互信息 集成学习 无向图骨架
下载PDF
基于知识图谱的电力交易智能推荐技术研究
13
作者 邓淑斌 王子石 +1 位作者 梁志飞 牟春风 《粘接》 CAS 2024年第10期149-152,共4页
为提高电力交易智能推荐的准确性,提出一种基于知识图谱的电力交易智能推荐方法。构建了电力交易智能推荐知识图谱,并设计了基于互信息的抽取算法,将电力交易知识抽取分为概念对生成-排序和聚类压缩2步进行抽取,在Freebase知识库中对所... 为提高电力交易智能推荐的准确性,提出一种基于知识图谱的电力交易智能推荐方法。构建了电力交易智能推荐知识图谱,并设计了基于互信息的抽取算法,将电力交易知识抽取分为概念对生成-排序和聚类压缩2步进行抽取,在Freebase知识库中对所提方法进行了验证。结果表明,所提方法可实现准确的知识抽取和答案抽取,抽取结果的准确率达到97.97%,平均精度均值为98%,平均质量得分为2.46。相较于随机抽取方法,抽取结果的平均精度均值提高了77.99%,平均质量得分提高了1.75,具有一定的有效性、准确性和优越性。 展开更多
关键词 知识图谱 电力交易 智能推荐 抽取算法 互信息
下载PDF
基于云模型、图论和互信息的遥感影像分割方法 被引量:6
14
作者 宋岚 文堂柳 +1 位作者 黎海生 王杉 《电子学报》 EI CAS CSCD 北大核心 2015年第8期1518-1525,共8页
针对传统的基于局部信息搜索的分割方法很少考虑图像的全局信息,而且容易忽略影像分割中的随机性和不确定性,本文提出了一种基于云模型、图论和互信息的影像分割方法.使用云模型来反映像素聚类成区域时的不确定性和随机性,将图论方法引... 针对传统的基于局部信息搜索的分割方法很少考虑图像的全局信息,而且容易忽略影像分割中的随机性和不确定性,本文提出了一种基于云模型、图论和互信息的影像分割方法.使用云模型来反映像素聚类成区域时的不确定性和随机性,将图论方法引入基于互信息的最优割集的生成从而得到全局最优分割,利用云模型区域概念所呈现出的多维特征,通过云综合异质性度量来改进边界权重的计算,从而实现对区域相异性的区分能力.从实验结果来看,本文提出的方法,能产生有意义的、完整的、内部同质的分割区域,在分割精度上基本能满足人眼的视觉要求. 展开更多
关键词 云模型 小波降噪 HARRIS算子 互信息 图论 最小生成树
下载PDF
基于拉普拉斯谱的医学图像配准算法 被引量:5
15
作者 夏云 梁栋 +2 位作者 鲍文霞 徐慧 颜普 《计算机工程》 CAS CSCD 北大核心 2011年第14期231-232,235,共3页
提出一种基于拉普拉斯谱的医学图像配准算法,通过将谱图理论应用到医学图像配准中并引入特征向量,以达到提高配准精确度和计算效率的目的。该算法根据医学图像的解剖特征来构造拉普拉斯矩阵,通过分析拉普拉斯矩阵的谱得到匹配关系;采用... 提出一种基于拉普拉斯谱的医学图像配准算法,通过将谱图理论应用到医学图像配准中并引入特征向量,以达到提高配准精确度和计算效率的目的。该算法根据医学图像的解剖特征来构造拉普拉斯矩阵,通过分析拉普拉斯矩阵的谱得到匹配关系;采用射影变换模型,计算射影矩阵;通过坐标变换和图像插值方法实现图像配准。实验结果表明,该算法与经典的最大互信息配准算法相比,提高了单传感器和多传感器医学图像配准的精度,并且降低运算复杂度。 展开更多
关键词 配准 拉普拉斯谱 互信息 传感器
下载PDF
基于条件互信息的多维时间序列图模型 被引量:6
16
作者 高伟 田铮 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第2期257-260,267,共5页
在多维时间序列的图模型中引入信息论方法,提出了多维时间序列中各分量之间直接线性联系存在性的互信息检验.定义了线性条件互信息图,图中的结点表示多维时间序列的分量,结点间的边表示各分量之间存在的直接线性相依关系.提出了分量之... 在多维时间序列的图模型中引入信息论方法,提出了多维时间序列中各分量之间直接线性联系存在性的互信息检验.定义了线性条件互信息图,图中的结点表示多维时间序列的分量,结点间的边表示各分量之间存在的直接线性相依关系.提出了分量之间条件线性联系存在性的信息论检验方法.图中边的存在性用基于线性条件互信息的统计量检验,统计量的显著性用置换检验决定.应用到实例中的结果表明本文的方法能迅速准确的捕捉各分量之间的直接线性联系. 展开更多
关键词 多维时间序列 图模型 互信息 线性条件互信息图
下载PDF
结合DBSCAN聚类与互信息的图像拼接算法 被引量:8
17
作者 张美玉 王洋洋 +1 位作者 吴良武 秦绪佳 《小型微型计算机系统》 CSCD 北大核心 2020年第4期825-829,共5页
为了更好地实现图像拼接的实时性、提高特征点匹配的效率和图像拼接的准确度,本文提出了一种基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)与互信息的图像拼接算法.首先,为了图像拼接的实时性,用ORB(Orient... 为了更好地实现图像拼接的实时性、提高特征点匹配的效率和图像拼接的准确度,本文提出了一种基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)与互信息的图像拼接算法.首先,为了图像拼接的实时性,用ORB(Oriented FAST and Rotated BRIEF)算法快速提取特征点,在此基础上利用DBSCAN聚类算法快速构建邻接图,通过邻接图估算图像的重叠区域;然后,用二值化互信息与欧式距离方法相结合的筛选方法,实现特征点的粗匹配,该方法可以提高特征点匹配准确度,此外根据估算的重叠区域,可以提高特征点匹配的效率;最后,用改进的RANSAC算法,计算出更精确的变换矩阵,使图像拼接的结果更准确.实验证明该方法能够实时的、高效的、精准的实现图像拼接. 展开更多
关键词 DBSCAN算法 邻接图 互信息 改进RANSAC算法
下载PDF
词汇间语义相关关系量化计算方法 被引量:21
18
作者 钟茂生 刘慧 刘磊 《中文信息学报》 CSCD 北大核心 2009年第2期115-122,共8页
词汇间语义关系的定量化研究是自然语言处理任务中一个重要的基础性工作。词汇间语义关系总体上分为等同关系、上下位关系、相关关系,现有的语义关系定量化工作主要集中于词汇间语义的等同关系(相似性)量化研究。该文研究和提出了量化... 词汇间语义关系的定量化研究是自然语言处理任务中一个重要的基础性工作。词汇间语义关系总体上分为等同关系、上下位关系、相关关系,现有的语义关系定量化工作主要集中于词汇间语义的等同关系(相似性)量化研究。该文研究和提出了量化词汇间语义相关关系的基本思路和新方法,即构造词汇相关关系二分图来求解和量化词汇间间接相关关系,该方法能够解决在统计语料中没有出现的词汇对的相关关系量化求解问题。实验结果表明,该文提出的方法比单纯用互信息来计算和量化词汇间语义相关关系更为可行。同时,对于一个特定词汇而言,该文的方法能够得到一个相关关系量化的相对合理的趋势性结果。 展开更多
关键词 计算机应用 中文信息处理 词汇间语义关系 相关关系 互信息 二分图 量化方法
下载PDF
基于互信息学习贝叶斯网络等价类 被引量:2
19
作者 李冰寒 高晓利 刘三阳 《计算机应用研究》 CSCD 北大核心 2011年第1期81-83,94,共4页
由数据构造贝叶斯网络结构是NP-难问题,根据互信息和条件独立测试,提出了一种构建最优贝叶斯网络结构的新算法。数值实验表明,新算法能较快地确定出与数据匹配程度最高的网络结构,从而能更高效地学习贝叶斯网络结构。
关键词 数据挖掘 贝叶斯网络 结构学习 连通图 互信息 条件独立测试
下载PDF
基于互K近邻图的自动图像标注与快速求解算法 被引量:5
20
作者 郭玉堂 《计算机科学》 CSCD 北大核心 2011年第2期277-280,共4页
图像语义具有模糊性、复杂性、抽象性等特点,在提取图像语义时仅用低层特征进行描述是不够的,需要结合图像相关内容,以便提高图像标注的精确度。为此,提出了基于互K近邻图的图像标注方法,该方法用一个互K近邻图融合了图像的低层特征之... 图像语义具有模糊性、复杂性、抽象性等特点,在提取图像语义时仅用低层特征进行描述是不够的,需要结合图像相关内容,以便提高图像标注的精确度。为此,提出了基于互K近邻图的图像标注方法,该方法用一个互K近邻图融合了图像的低层特征之间、标注词之间以及图像与标注词间的相互关系。利用互K近邻图实现了根据两个节点间的相互关系来提取语义信息,弥补了基于K近邻图的方法中单方向挖掘节点信息的不足,有效地提高了图像标注的性能。在对互K近邻图结构分析的基础上,结合重启随机游走,提出了一种快速求解算法,该算法在不明显降低图像标注精度下,实现了快速求解。在Corel图像数据集上进行了实验,结果验证了所提方法的有效性。 展开更多
关键词 图像标注 互K近邻图 重启随机游走 快速求解
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部