Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let denote the space of all non-empty compact convex subsets of X endowed with ...Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let denote the space of all non-empty compact convex subsets of X endowed with the Hausdorff distance. Moreover, let denote the closure of the set . We prove that the set of all , such that the minimization (resp. maximization) problem min(A,G) (resp. max(A,G)) is well posed, contains a dense G δ-subset of , thus extending the recent results due to Blasi, Myjak and Papini and Li.展开更多
基金partly supported by the National Natural Science Foundation of China(Grant No,10271025)
文摘Let G be a non-empty closed (resp. bounded closed) boundedly relatively weakly compact subset in a strictly convex Kadec Banach space X. Let denote the space of all non-empty compact convex subsets of X endowed with the Hausdorff distance. Moreover, let denote the closure of the set . We prove that the set of all , such that the minimization (resp. maximization) problem min(A,G) (resp. max(A,G)) is well posed, contains a dense G δ-subset of , thus extending the recent results due to Blasi, Myjak and Papini and Li.