A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and de...A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and denoted by PILS. The type of PILS is defined by (h1n1 h2n2…hknk ). If any two PILS inaset of t PILS of type T are orthogonal, then we denote the set by t-HMOLS(T). It has been proved that 3-HMOLS(2n31) exist for n ≥6 with 11 possible exceptions. In this paper, we investigate the existence of 3-HMOLS(2nu1) with u ≥ 4, and prove that 3-HMOLS(2~u1) exist if n ≥ 54 and n ≥7/4u + 7.展开更多
基金Research supported by National Natural Science Foundation of China under Grant No. 60873267Zhejiang Provincial Natural Science Foundation of China under Grant No. Y607026sponsored by K. C. Wong Magna Fund at Ningbo University
文摘A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and denoted by PILS. The type of PILS is defined by (h1n1 h2n2…hknk ). If any two PILS inaset of t PILS of type T are orthogonal, then we denote the set by t-HMOLS(T). It has been proved that 3-HMOLS(2n31) exist for n ≥6 with 11 possible exceptions. In this paper, we investigate the existence of 3-HMOLS(2nu1) with u ≥ 4, and prove that 3-HMOLS(2~u1) exist if n ≥ 54 and n ≥7/4u + 7.