To understand the genetic diversity and drug resistance status of Mycobocterium tuberculosis (M. tuberculosis) circulating in Xuzhou of China, the spacer-oligonucleotide typing (Spoligotyping) and multi-loci VNTRs...To understand the genetic diversity and drug resistance status of Mycobocterium tuberculosis (M. tuberculosis) circulating in Xuzhou of China, the spacer-oligonucleotide typing (Spoligotyping) and multi-loci VNTRs (variable number tandem repeats) analysis (MLVA) were utilized for the genotyping of the isolates. Drug susceptibility test (DST) was performed by the proportion method on the Lowenstein-Jensen (L-J) medium using isoniazid, rifampicin, ethambutol, and streptomycin. By Spoligotyping, 287 M. tuberculosis isolates were differentiated into 14 clusters. Then with 15-1oci MLVA, these strains could be divided into 32 clusters, 228 genotypes. Of 15 VNTRs, 6 loci had the highly discriminatory powers, 6 loci presented moderate discrimination and 3 loci demonstrated less polymorphism. The DST results showed that 46 strains were resistant to at least one first-line anti-tuberculosis agent. There was a difference in the isoniazid resistance between Beijing and non-Beijing genotype strains. We concluded that the combination of Spoligotyping and 15 VNTR loci as the genotyping in our study was applicable for this region, the drug resistant isolates were identified, and the Beijing family was the most prevalent genotype in the rural counties of Xuzhou.展开更多
基金funded by the projects 2013ZX10003002-001 of Chinese National Key Program of Mega Infectious Disease of the National 12th Five-Year Planthe Science and Technology Innovation Team Support project CX201412 of Changzhi Medical College
文摘To understand the genetic diversity and drug resistance status of Mycobocterium tuberculosis (M. tuberculosis) circulating in Xuzhou of China, the spacer-oligonucleotide typing (Spoligotyping) and multi-loci VNTRs (variable number tandem repeats) analysis (MLVA) were utilized for the genotyping of the isolates. Drug susceptibility test (DST) was performed by the proportion method on the Lowenstein-Jensen (L-J) medium using isoniazid, rifampicin, ethambutol, and streptomycin. By Spoligotyping, 287 M. tuberculosis isolates were differentiated into 14 clusters. Then with 15-1oci MLVA, these strains could be divided into 32 clusters, 228 genotypes. Of 15 VNTRs, 6 loci had the highly discriminatory powers, 6 loci presented moderate discrimination and 3 loci demonstrated less polymorphism. The DST results showed that 46 strains were resistant to at least one first-line anti-tuberculosis agent. There was a difference in the isoniazid resistance between Beijing and non-Beijing genotype strains. We concluded that the combination of Spoligotyping and 15 VNTR loci as the genotyping in our study was applicable for this region, the drug resistant isolates were identified, and the Beijing family was the most prevalent genotype in the rural counties of Xuzhou.