BACKGROUND Cases of myelin oligodendrocyte glycoprotein(MOG)antibody-related disease have a history of coronavirus disease 2019 infection or its vaccination before disease onset.Severe acute respiratory syndrome virus...BACKGROUND Cases of myelin oligodendrocyte glycoprotein(MOG)antibody-related disease have a history of coronavirus disease 2019 infection or its vaccination before disease onset.Severe acute respiratory syndrome virus 2(SARS-CoV-2)infection has been considered to be a trigger of central nervous system autoimmune diseases.CASE SUMMARY Here we report a 20-year male with MOG-associated transverse myelitis after a SARS-CoV-2 infection.The patient received a near-complete recovery after standard immunological treatments.CONCLUSION Attention should be paid to the evaluation of typical or atypical neurological symptoms that may be triggered by SARS-CoV-2 infection.展开更多
Neuromyelitis optica spectrum disorders(NMOSD)is a demyelinating disease mainly involving the optic nerve and spinal cord.It has recurrent and aggravating attacks and high disability rate.Most patients have a stepwise...Neuromyelitis optica spectrum disorders(NMOSD)is a demyelinating disease mainly involving the optic nerve and spinal cord.It has recurrent and aggravating attacks and high disability rate.Most patients have a stepwise progression,resulting in complete blindness or paraplegia.NMOSD lesions contain not only the optic nerve and spinal cord,but also other neurological and non-neurological symptoms,which has clinical heterogeneity.The discovery of aquaporin-4-immunoglobulin G(AQP4-IgG)attributed it to autoimmune ion-channel disease,and rituximab(RTX)has achieved good clinical efficacy in the treatment of NMOSD.Myelin oligodendrocyte glycoprotein(MOG)antibodies have been found in some AQP4-IgG-negative NMOSD patients,which have different clinical and immunological features,posing new challenges to the diagnosis and treatment of NMOSD,which may require re-design and testing of new immune-targeted drugs.展开更多
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im...BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.展开更多
Immunoglobulin G against myelin oligodendrocyte glycoprotein(MOG-Ig G) is detectable in neuromyelitis optica spectrum disorder(NMOSD) without aquaporin-4 Ig G(AQP4-Ig G), but its pathogenicity remains unclear.In this ...Immunoglobulin G against myelin oligodendrocyte glycoprotein(MOG-Ig G) is detectable in neuromyelitis optica spectrum disorder(NMOSD) without aquaporin-4 Ig G(AQP4-Ig G), but its pathogenicity remains unclear.In this study, we explored the pathogenic mechanisms of MOG-Ig G in vitro and in vivo and compared them with those of AQP4-Ig G. MOG-Ig G-positive serum induced complement activation and cell death in human embryonic kidney(HEK)-293 T cells transfected with human MOG. In C57 BL/6 mice and Sprague-Dawley rats, MOG-Ig G only caused lesions in the presence of complement. Interestingly, AQP4-Ig G induced astroglial damage, while MOGIg G mainly caused myelin loss. MOG-Ig G also induced astrocyte damage in mouse brains in the presence ofcomplement. Importantly, we also observed ultrastructural changes induced by MOG-Ig G and AQP4-Ig G. These findings suggest that MOG-Ig G directly mediates cell death by activating complement in vitro and producing NMOSDlike lesions in vivo. AQP4-Ig G directly targets astrocytes,while MOG-Ig G mainly damages oligodendrocytes.展开更多
Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongo...Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongoing.Here,we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica.Research in this area is consistently increasing,with China and the United States leading the way on the number of studies conducted.The Mayo Clinic is a highly reputable institution in the United States,and was identified as the most authoritative institution in this field.Furthermore,Professor Wingerchuk from the Mayo Clinic was the most authoritative expe rt in this field.Keyword analysis revealed that the terms "neuro myelitis optica"(261 times), "multiple sclerosis"(220 times), "neuromyelitis optica spectrum disorder"(132 times), "aquaporin4"(99 times),and "optical neuritis"(87 times) were the most frequently used keywords in literature related to this field.Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis.Furthermore,aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder.Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarke r for myelin oligodendrocyte glycoprotein antibody-associated disease.Recent biomarkers for neuromyelitis optica in clude cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein,serum astrocyte damage biomarkers like FAM19A5,serum albumin,and gammaaminobutyric acid.The latest prospective clinical trials are exploring the potential of these biomarkers.Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder.The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity,specificity,and safety for the accurate diagnosis of neuro myelitis optica.展开更多
基金Supported by the Shenzhen University Teaching Reform Fund,No.JG2023166the Shenzhen Science and Technology Innovation Commission Fund,No.JCYJ2022081802810022the Shenzhen Science and Technology Innovation Commission Basic Research Key Projects Fund,No.JCYJ20210324115800003.
文摘BACKGROUND Cases of myelin oligodendrocyte glycoprotein(MOG)antibody-related disease have a history of coronavirus disease 2019 infection or its vaccination before disease onset.Severe acute respiratory syndrome virus 2(SARS-CoV-2)infection has been considered to be a trigger of central nervous system autoimmune diseases.CASE SUMMARY Here we report a 20-year male with MOG-associated transverse myelitis after a SARS-CoV-2 infection.The patient received a near-complete recovery after standard immunological treatments.CONCLUSION Attention should be paid to the evaluation of typical or atypical neurological symptoms that may be triggered by SARS-CoV-2 infection.
文摘Neuromyelitis optica spectrum disorders(NMOSD)is a demyelinating disease mainly involving the optic nerve and spinal cord.It has recurrent and aggravating attacks and high disability rate.Most patients have a stepwise progression,resulting in complete blindness or paraplegia.NMOSD lesions contain not only the optic nerve and spinal cord,but also other neurological and non-neurological symptoms,which has clinical heterogeneity.The discovery of aquaporin-4-immunoglobulin G(AQP4-IgG)attributed it to autoimmune ion-channel disease,and rituximab(RTX)has achieved good clinical efficacy in the treatment of NMOSD.Myelin oligodendrocyte glycoprotein(MOG)antibodies have been found in some AQP4-IgG-negative NMOSD patients,which have different clinical and immunological features,posing new challenges to the diagnosis and treatment of NMOSD,which may require re-design and testing of new immune-targeted drugs.
文摘BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.
基金supported by grants from the National Natural Science Foundation of China (81471218 and 81771300)the Natural Science Foundation of Guangdong Province, China (2017A030313853)
文摘Immunoglobulin G against myelin oligodendrocyte glycoprotein(MOG-Ig G) is detectable in neuromyelitis optica spectrum disorder(NMOSD) without aquaporin-4 Ig G(AQP4-Ig G), but its pathogenicity remains unclear.In this study, we explored the pathogenic mechanisms of MOG-Ig G in vitro and in vivo and compared them with those of AQP4-Ig G. MOG-Ig G-positive serum induced complement activation and cell death in human embryonic kidney(HEK)-293 T cells transfected with human MOG. In C57 BL/6 mice and Sprague-Dawley rats, MOG-Ig G only caused lesions in the presence of complement. Interestingly, AQP4-Ig G induced astroglial damage, while MOGIg G mainly caused myelin loss. MOG-Ig G also induced astrocyte damage in mouse brains in the presence ofcomplement. Importantly, we also observed ultrastructural changes induced by MOG-Ig G and AQP4-Ig G. These findings suggest that MOG-Ig G directly mediates cell death by activating complement in vitro and producing NMOSDlike lesions in vivo. AQP4-Ig G directly targets astrocytes,while MOG-Ig G mainly damages oligodendrocytes.
文摘Neuromyelitis optica is an inflammatory demyelinating disease of the central nervous system that differs from multiple sclerosis.Over the past 20 years,the search for biomarke rs for neuromyelitis optica has been ongoing.Here,we used a bibliometric approach to analyze the main research focus in the field of biomarkers for neuromyelitis optica.Research in this area is consistently increasing,with China and the United States leading the way on the number of studies conducted.The Mayo Clinic is a highly reputable institution in the United States,and was identified as the most authoritative institution in this field.Furthermore,Professor Wingerchuk from the Mayo Clinic was the most authoritative expe rt in this field.Keyword analysis revealed that the terms "neuro myelitis optica"(261 times), "multiple sclerosis"(220 times), "neuromyelitis optica spectrum disorder"(132 times), "aquaporin4"(99 times),and "optical neuritis"(87 times) were the most frequently used keywords in literature related to this field.Comprehensive analysis of the classical literature showed that the majority of publications provide conclusive research evidence supporting the use of aquaporin-4-IgG and neuromyelitis optica-IgG to effectively diagnose and differentiate neuromyelitis optica from multiple sclerosis.Furthermore,aquaporin-4-IgG has emerged as a highly specific diagnostic biomarker for neuromyelitis optica spectrum disorder.Myelin oligodendrocyte glycoprotein-IgG is a diagnostic biomarke r for myelin oligodendrocyte glycoprotein antibody-associated disease.Recent biomarkers for neuromyelitis optica in clude cerebrospinal fluid immunological biomarkers such as glial fibrillary acidic protein,serum astrocyte damage biomarkers like FAM19A5,serum albumin,and gammaaminobutyric acid.The latest prospective clinical trials are exploring the potential of these biomarkers.Preliminary results indicate that glial fibrillary acidic protein is emerging as a promising candidate biomarker for neuromyelitis optica spectrum disorder.The ultimate goal of future research is to identify non-invasive biomarkers with high sensitivity,specificity,and safety for the accurate diagnosis of neuro myelitis optica.