Objectives To evaluate the expression profile of myoD microRNA-29 (miR-29) family in L6 myoblast differentiated to myotube or L6 myotube treated by glucose and insulin, and to further probe the molecular mechanism o...Objectives To evaluate the expression profile of myoD microRNA-29 (miR-29) family in L6 myoblast differentiated to myotube or L6 myotube treated by glucose and insulin, and to further probe the molecular mechanism of myoD regulating the expression of miR-29 clusters.展开更多
为从分子水平研究饥饿对大黄鱼肌肉生长代谢的影响,本实验采用qPCR技术研究了在饥饿胁迫以及复投喂过程中胰岛素样生长因子基因IGF-Ⅰ(insulin-like growth fator-Ⅰ)、雷帕霉素靶蛋白基因mTOR(mammalian target of rapamycin)、成肌分...为从分子水平研究饥饿对大黄鱼肌肉生长代谢的影响,本实验采用qPCR技术研究了在饥饿胁迫以及复投喂过程中胰岛素样生长因子基因IGF-Ⅰ(insulin-like growth fator-Ⅰ)、雷帕霉素靶蛋白基因mTOR(mammalian target of rapamycin)、成肌分化抗原基因MyoD(myogenic differentiationantigen)和肌球蛋白重链基因MHC(myosin heavy chain)等4个大黄鱼肌肉生长调控相关基因在肝脏、脾脏、脑、心脏、肠、鳃、肌肉和肾8个组织中的表达模式。结果显示:四个基因在正常大黄鱼不同组织间表达存在显著差异;饥饿显著降低IGF-Ⅰ在肝组织中的表达量(P<0.05),在复投喂14d时显著上升,此外在肠和鳃组织中表达量变化显著(P<0.05);mTOR表达量随着饥饿时间的延长,在脾、心和肾组织中表达量下降,在脑、鳃和肌肉组织中表达量显著升高(P<0.05);MyoD在饥饿胁迫和恢复投喂期间,在肝脏、鳃和肌肉组织中表达量变化极显著(P<0.01);饥饿和恢复投喂对MHC在鳃和肌肉中的表达影响显著(P<0.05)。结果提示饥饿可能通过调节这些肌肉生长相关基因的表达来影响肌肉的生长。展开更多
Background:A considerable number of muscle development-related genes were differentially expressed in the early stage of avian adipocyte differentiation.However,the functions of them in adipocyte differentiation remai...Background:A considerable number of muscle development-related genes were differentially expressed in the early stage of avian adipocyte differentiation.However,the functions of them in adipocyte differentiation remain largely known.In this study,the myoblast determination protein 1(MYOD1)was selected as a representative of muscle development.We investigated its expression,function,and regulation in avian adipocyte differentiation.Results:The expression of MYOD1 decreased significantly in the early stage of avian adipocyte differentiation.CRIS PR/Cas9-mediated deletion of MYOD1 induced adipocyte differentiation,whereas over-expression of MYOD1 inhibited adipogenesis.The mRNA-seq data showed that MYOD1 could perturb the lipid biosynthetic process during differentiation.Our results showed that MYOD1 directly up-regulates the miR-206 expression by binding the upstream 1200 bp region of miR-206.Then,over-expression of miR-206 can inhibit the adipogenesis.Furthermore,MYOD1 affected the expression of endogenous miR-206 and its target gene Kruppel-like factor 4(KLF4),which is an important activator of adipogenesis.Accordingly,the inhibition of miR-206 or over-expression of KLF4 could counteract the inhibitory effect of MYOD1 on adipocyte differentiation.Conclusions:Our results establish that MYOD1 inhibits adipocyte differentiation by up-regulating miR-206 to suppress the KLF4 expression.These findings identify a novel function of MYOD1 in adipocyte differentiation,suggesting a potential role in body-fat distribution regulation.展开更多
Background:Myogenic transdifferentiation can be accomplished through ectopic MYOD1 expression,which is facilitated by various signaling pathways associated with myogenesis.In this study,we attempted to transdifferenti...Background:Myogenic transdifferentiation can be accomplished through ectopic MYOD1 expression,which is facilitated by various signaling pathways associated with myogenesis.In this study,we attempted to transdifferentiate pig embryonic fibroblasts(PEFs)myogenically into skeletal muscle through overexpression of the pig MYOD1 gene and modulation of the FGF,TGF-β,WNT,and cAMP signaling pathways.Results:The MYOD1 overexpression vector was constructed based on comparative sequence analysis,demonstrating that pig MYOD1 has evolutionarily conserved domains across various species.Although forced MYOD1 expression through these vectors triggered the expression of endogenous muscle markers,transdifferentiated muscle cells from fibroblasts were not observed.Therefore,various signaling molecules,including FGF2,SB431542,CHIR99021,and forskolin,along with MYOD1 overexpression were applied to enhance the myogenic reprogramming.The modified conditions led to the derivation of myotubes and activation of muscle markers in PEFs,as determined by qPCR and immunostaining.Notably,a sarcomere-like structure was observed,indicating that terminally differentiated skeletal muscle could be obtained from transdifferentiated cells.Conclusions:In summary,we established a protocol for reprogramming MYOD1-overexpressing PEFs into the mature skeletal muscle using signaling molecules.Our myogenic reprogramming can be used as a cell source for muscle disease models in regenerative medicine and the production of cultured meat in cellular agriculture.展开更多
基金Supported by the National Nature Science Foundation of China(81100608 and 30901342)
文摘Objectives To evaluate the expression profile of myoD microRNA-29 (miR-29) family in L6 myoblast differentiated to myotube or L6 myotube treated by glucose and insulin, and to further probe the molecular mechanism of myoD regulating the expression of miR-29 clusters.
文摘为从分子水平研究饥饿对大黄鱼肌肉生长代谢的影响,本实验采用qPCR技术研究了在饥饿胁迫以及复投喂过程中胰岛素样生长因子基因IGF-Ⅰ(insulin-like growth fator-Ⅰ)、雷帕霉素靶蛋白基因mTOR(mammalian target of rapamycin)、成肌分化抗原基因MyoD(myogenic differentiationantigen)和肌球蛋白重链基因MHC(myosin heavy chain)等4个大黄鱼肌肉生长调控相关基因在肝脏、脾脏、脑、心脏、肠、鳃、肌肉和肾8个组织中的表达模式。结果显示:四个基因在正常大黄鱼不同组织间表达存在显著差异;饥饿显著降低IGF-Ⅰ在肝组织中的表达量(P<0.05),在复投喂14d时显著上升,此外在肠和鳃组织中表达量变化显著(P<0.05);mTOR表达量随着饥饿时间的延长,在脾、心和肾组织中表达量下降,在脑、鳃和肌肉组织中表达量显著升高(P<0.05);MyoD在饥饿胁迫和恢复投喂期间,在肝脏、鳃和肌肉组织中表达量变化极显著(P<0.01);饥饿和恢复投喂对MHC在鳃和肌肉中的表达影响显著(P<0.05)。结果提示饥饿可能通过调节这些肌肉生长相关基因的表达来影响肌肉的生长。
基金supported by the National Waterfowl-Industry Technology Research System(CARS-42)National Nature Science Foundation of China(31972525,31572388)+1 种基金Beijing Municipal Science&Technology Commission(Z181100002418008)Key-Area Research and Development Program of Guangdong Province(2020B020222003).
文摘Background:A considerable number of muscle development-related genes were differentially expressed in the early stage of avian adipocyte differentiation.However,the functions of them in adipocyte differentiation remain largely known.In this study,the myoblast determination protein 1(MYOD1)was selected as a representative of muscle development.We investigated its expression,function,and regulation in avian adipocyte differentiation.Results:The expression of MYOD1 decreased significantly in the early stage of avian adipocyte differentiation.CRIS PR/Cas9-mediated deletion of MYOD1 induced adipocyte differentiation,whereas over-expression of MYOD1 inhibited adipogenesis.The mRNA-seq data showed that MYOD1 could perturb the lipid biosynthetic process during differentiation.Our results showed that MYOD1 directly up-regulates the miR-206 expression by binding the upstream 1200 bp region of miR-206.Then,over-expression of miR-206 can inhibit the adipogenesis.Furthermore,MYOD1 affected the expression of endogenous miR-206 and its target gene Kruppel-like factor 4(KLF4),which is an important activator of adipogenesis.Accordingly,the inhibition of miR-206 or over-expression of KLF4 could counteract the inhibitory effect of MYOD1 on adipocyte differentiation.Conclusions:Our results establish that MYOD1 inhibits adipocyte differentiation by up-regulating miR-206 to suppress the KLF4 expression.These findings identify a novel function of MYOD1 in adipocyte differentiation,suggesting a potential role in body-fat distribution regulation.
基金supported by the BK21 Four program,the Korea Evaluation Institute of Industrial Technology(KEIT,20012411)the National Research Foundation of Korea(NRF)grant(2021R1A2C4001837).
文摘Background:Myogenic transdifferentiation can be accomplished through ectopic MYOD1 expression,which is facilitated by various signaling pathways associated with myogenesis.In this study,we attempted to transdifferentiate pig embryonic fibroblasts(PEFs)myogenically into skeletal muscle through overexpression of the pig MYOD1 gene and modulation of the FGF,TGF-β,WNT,and cAMP signaling pathways.Results:The MYOD1 overexpression vector was constructed based on comparative sequence analysis,demonstrating that pig MYOD1 has evolutionarily conserved domains across various species.Although forced MYOD1 expression through these vectors triggered the expression of endogenous muscle markers,transdifferentiated muscle cells from fibroblasts were not observed.Therefore,various signaling molecules,including FGF2,SB431542,CHIR99021,and forskolin,along with MYOD1 overexpression were applied to enhance the myogenic reprogramming.The modified conditions led to the derivation of myotubes and activation of muscle markers in PEFs,as determined by qPCR and immunostaining.Notably,a sarcomere-like structure was observed,indicating that terminally differentiated skeletal muscle could be obtained from transdifferentiated cells.Conclusions:In summary,we established a protocol for reprogramming MYOD1-overexpressing PEFs into the mature skeletal muscle using signaling molecules.Our myogenic reprogramming can be used as a cell source for muscle disease models in regenerative medicine and the production of cultured meat in cellular agriculture.