Myocardial regeneration has been considered a promising option for the treatment of adult myocardial injuries.Previously,a chick early amniotic fluid(ceAF)preparation was shown to contain growth-related factors that p...Myocardial regeneration has been considered a promising option for the treatment of adult myocardial injuries.Previously,a chick early amniotic fluid(ceAF)preparation was shown to contain growth-related factors that pro-moted embryonic growth and cellular proliferation,though the nature of the components within ceAF were not fully defined.Here we tested whether this ceAF preparation is similarly effective in the promotion of myocardial regen-eration,which could provide an alternative therapeutic for intervening myocardial injury.In this study,a myocardial ischemic injury model was established in adult mice and pigs by multiple research entities,and we were able to show that ceAF can efficiently rescue damaged cardiac tissues and markedly improve cardiac function in both experimental models through intravenous administration.ceAF administration increased cell proliferation and improved angio-genesis,likely via down-regulation of Hippo-YAP signaling.Our data suggest that ceAF administration can effectively rescue ischemic heart injury,providing the key functional information for the further development of ceAF for use in attenuating myocardial injury.展开更多
Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 ...Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 male, 15 female) undergoing correction of cardiac defects were divided into three groups randomly: group Ⅰ no myocardial ischemia,group Ⅱ myocardial ischemia less than 60 minutes, group Ⅲmyocardial ischemia 】 60 minutes. There were no significant differences in the three groups in age, sex ratio, C/T ratio, or left ventricular function. Blood samples for analysis were collected before skin incision and at time intervals up to 6 days postoperatively. Analysis of creatine kinase MB.LDH and cardiac-specific troponin I was used for the detection of myocardial damage. Meantime, the ECG was checked for myocardial infarction. After the reperfusion, myocardial tissue was obtained from the free wall of right ventricle myocardial structure studies. Results The level of cTnI was increased展开更多
Objective A general review was made of studies involving: (1) The experimental evidence of remote ischemic preconditioning (RIPC) and relative clinical studies, (2) The experimental and clinical evidences of re...Objective A general review was made of studies involving: (1) The experimental evidence of remote ischemic preconditioning (RIPC) and relative clinical studies, (2) The experimental and clinical evidences of remote ischemic postconditioning (RIPOC), (3) The potential mechanistic pathways underlying their protective effects.Data sources The data used in this review were mainly from manuscripts listed in PubMed that were published in English from 1986 to 2010. The search terms were "myocardial ischemia reperfusion injury", "ischemia preconditioning","ischemia postconditioning", "remote preconditioning" and "remote postconditioning".Study selection (1) Clinical and experimental evidence that both RIPC and RIPOC produce preservation of ischemia reperfusion injury (IRI) of myocardium and other organs, (2) Studies related to the potential mechanisms, by which remote ischemic conditioning protects myocardium against IRI.Results Both RIPC and RIOPC have been shown to attenuate myocardial IRI in laboratory animals. Also, their cardioprotective effects have appeared in some clinical studies. Except the external, the detailed internal mechanisms of remote ischemic conditioning have been generally described. Through these descriptions better protocols can be developed to provide improved cardioprotective procedures.Conclusions Remote ischemic conditioning is an endogenous cardioprotective mechanism from outside the heart that protects against myocardial IRI and represents a general form of inter-organ protection. Remote ischemic conditioning may have an immense impact on clinical practice in the near future.展开更多
基金This work was supported by ZheJiang HygeianCells Biomedical Co.Ltd.,Hangzhou,Zhejiang,310019,China.
文摘Myocardial regeneration has been considered a promising option for the treatment of adult myocardial injuries.Previously,a chick early amniotic fluid(ceAF)preparation was shown to contain growth-related factors that pro-moted embryonic growth and cellular proliferation,though the nature of the components within ceAF were not fully defined.Here we tested whether this ceAF preparation is similarly effective in the promotion of myocardial regen-eration,which could provide an alternative therapeutic for intervening myocardial injury.In this study,a myocardial ischemic injury model was established in adult mice and pigs by multiple research entities,and we were able to show that ceAF can efficiently rescue damaged cardiac tissues and markedly improve cardiac function in both experimental models through intravenous administration.ceAF administration increased cell proliferation and improved angio-genesis,likely via down-regulation of Hippo-YAP signaling.Our data suggest that ceAF administration can effectively rescue ischemic heart injury,providing the key functional information for the further development of ceAF for use in attenuating myocardial injury.
文摘Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 male, 15 female) undergoing correction of cardiac defects were divided into three groups randomly: group Ⅰ no myocardial ischemia,group Ⅱ myocardial ischemia less than 60 minutes, group Ⅲmyocardial ischemia 】 60 minutes. There were no significant differences in the three groups in age, sex ratio, C/T ratio, or left ventricular function. Blood samples for analysis were collected before skin incision and at time intervals up to 6 days postoperatively. Analysis of creatine kinase MB.LDH and cardiac-specific troponin I was used for the detection of myocardial damage. Meantime, the ECG was checked for myocardial infarction. After the reperfusion, myocardial tissue was obtained from the free wall of right ventricle myocardial structure studies. Results The level of cTnI was increased
基金Fhis study was supported by a grant from the National Natural Science Foundation of China (No. 30972836).
文摘Objective A general review was made of studies involving: (1) The experimental evidence of remote ischemic preconditioning (RIPC) and relative clinical studies, (2) The experimental and clinical evidences of remote ischemic postconditioning (RIPOC), (3) The potential mechanistic pathways underlying their protective effects.Data sources The data used in this review were mainly from manuscripts listed in PubMed that were published in English from 1986 to 2010. The search terms were "myocardial ischemia reperfusion injury", "ischemia preconditioning","ischemia postconditioning", "remote preconditioning" and "remote postconditioning".Study selection (1) Clinical and experimental evidence that both RIPC and RIPOC produce preservation of ischemia reperfusion injury (IRI) of myocardium and other organs, (2) Studies related to the potential mechanisms, by which remote ischemic conditioning protects myocardium against IRI.Results Both RIPC and RIOPC have been shown to attenuate myocardial IRI in laboratory animals. Also, their cardioprotective effects have appeared in some clinical studies. Except the external, the detailed internal mechanisms of remote ischemic conditioning have been generally described. Through these descriptions better protocols can be developed to provide improved cardioprotective procedures.Conclusions Remote ischemic conditioning is an endogenous cardioprotective mechanism from outside the heart that protects against myocardial IRI and represents a general form of inter-organ protection. Remote ischemic conditioning may have an immense impact on clinical practice in the near future.