期刊文献+
共找到5,875篇文章
< 1 2 250 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:2
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Network-pharmacology-based research on protective effects and underlying mechanism of Shuxin decoction against myocardial ischemia/reperfusion injury with diabetes
2
作者 Ling Yang Yang Jian +12 位作者 Zai-Yuan Zhang Bao-Wen Qi Yu-Bo Li Pan Long Yao Yang Xue Wang Shuo Huang Jing Huang Long-Fu Zhou Jie Ma Chang-Qing Jiang Yong-He Hu Wen-Jing Xiao 《World Journal of Diabetes》 SCIE 2023年第7期1057-1076,共20页
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-z... BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway. 展开更多
关键词 Chinese herbal drugs Network-pharmacology DIABETES myocardial reperfusion injury Shuxin decoction
下载PDF
Atorvastatin Alleviates Myocardial Ischemia-Reperfusion Injury via miR-26a-5p/FOXO1
3
作者 Jinlan Duan Tong Zhang +3 位作者 Ying Zhu Bingtuan Lu Qi Zheng Ninghui Mu 《Journal of Biosciences and Medicines》 CAS 2023年第2期215-231,共17页
Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart f... Purpose: Ischemia-reperfusion (I/R) injury exacerbates myocardial cell death (including apoptosis and necrosis), leading to complications such as arrhythmias, myocardial stenosis, microvascular obstruction and heart failure, and it is particularly important to seek new strategies to mitigate reperfusion injury. In this paper, we will investigate whether atorvastatin can alleviate myocardial ischemia-reperfusion injury and verify its molecular mechanism. Methods: We successfully constructed a hypoxia-reperfusion (H/R) H9c2 cell model and transfected miR-26a-5p mimic, miR-26a-5p inhibitor and its negative control NC-mimic or NC-inhibitor into H9c2 cells using a transfection kit. The expression of miR-26a-5p and FOXO1 were detected by RT-qPCR assay, the expression of related proteins by Western blot assay, the cell viability of H9c2 cells by CCK-8 assay, the apoptosis rate of H9c2 cells by flow cytometry, the CK and LDH activity in cells by CK and LDH assay kits. The targeting relationship between miR-26a-5p and FOXO1 was verified by dual luciferase reporter gene assay. Results: MiR-26a-5p expression was decreased in H/R-induced cells and FOXO1 expression was increased in H/R-induced cells. Atorvastatin alleviated H/R injury in cardiomyocytes and was most effective at a concentration of 1 μM. Atorvastatin alleviated H/R injury in cardiomyocytes by upregulating miR-26a-5p expression, miR-26a-5p and FOXO1 were negatively regulated by targeting. Conclusion: Atorvastatin can alleviate H/R injury in cardiomyocytes by regulating miR-26a-5p/FOXO1. 展开更多
关键词 myocardial ischemia-reperfusion injury ATORVASTATIN miR-26a-5p FOXO1
下载PDF
Flow cytometric analysis of circulating microvesicles derived from myocardial ischemic preconditioning and cardioprotection of ischemia/reperfusion injury in rats 被引量:3
4
作者 Miao LIU Yi-lu WANG +10 位作者 Man SHANG Yao WANG Qi ZHANG Shao-xun WANG Su WEI Kun-wei ZHANG Chao LIU Yan-na WU Ming-lin LIU Jun-qiu SONG Yan-xia LIU 《中国应用生理学杂志》 CAS CSCD 2015年第6期524-531,共8页
Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to i... Objective: To establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles(MVs) from myocardial ischemic preconditioning(IPC) treated rats(IPC-MVs), and to investigate the effects of IPC-MVs on ischemia/reperfusion(I/R) injury in rats. Methods: Myocardial IPC was elicited by three cycles of 5-min ischemia and 5-min reperfusion of the left anterior descending(LAD) coronary artery. Platelet-free plasma(PFP) was isolated through two steps of centrifugation at room temperature from the peripheral blood, and IPC-MVs were isolated by ultracentrifugation from PFP. PFP was incubated with anti-CD61, anti-CD144, anti-CD45 and anti-Erythroid Cells, and added 1, 2 μm latex beads to calibrate and absolutely count by flow cytometry. For functional research, I/R injury was induced by 30-min ischemia and 120-min reperfusion of LAD. IPC-MVs 7 mg/kg were infused via the femoral vein in myocardial I/R injured rats. Mean arterial blood pressure(MAP), heart rate(HR) and ST-segment of electrocardiogram(ECG) were monitored throughout the experiment. Changes of myocardial morphology were observed after hematoxylin-eosin(HE) staining. The activity of plasma lactate dehydrogenase(LDH) was tested by Microplate Reader. Myocardial infarct size was measured by TTC staining. Results: Total IPC-MVs and different phenotypes, including platelet-derived MVs(PMVs), endothelial cell-derived MVs(EMVs), leucocyte-derived MVs(LMVs) and erythrocyte-derived MVs(RMVs) were all isolated which were identified membrane vesicles(<1 μm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats(P<0.05, respectively). In addition, at the end of 120-min reperfusion in I/R injured rats, IPC-MVs markedly increased HR(P<0.01), decreased ST-segment and LDH activity(P<0.05, P<0.01). The damage of myocardium was obviously alleviated and myocardial infarct size was significantly lowered after IPC-MVs treatment(P<0.01). Conclusion: The method of flow cytometry was successfully established to detect the phenotypes and concentration alteration of IPC-MVs, including PMVs, EMVs, LMVs and RMVs. Furthermore, circulating IPC-MVs protected myocardium against I/R injury in rats. 展开更多
关键词 缺血/再灌注损伤 流式细胞仪分析 心肌梗死 缺血预处理 保护作用 大鼠 循环 微泡
下载PDF
Effect of Minocycline Postconditioning and Ischemic Postconditioning on Myocardial Ischemia-reperfusion Injury in Atherosclerosis Rabbits 被引量:1
5
作者 黄从刚 李睿 +6 位作者 曾秋棠 丁艳萍 邹永光 毛晓波 胡威 熊蓉 黎明 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第4期524-529,共6页
This study examined the protective effect of ischemic postconditioning(IPoC) and minocycline postconditioning(MT) on myocardial ischemia-reperfusion(I/R) injury in atherosclerosis(AS) animals and the possible mechanis... This study examined the protective effect of ischemic postconditioning(IPoC) and minocycline postconditioning(MT) on myocardial ischemia-reperfusion(I/R) injury in atherosclerosis(AS) animals and the possible mechanism.Forty male healthy rabbits were injected with bovine serum albumin following feeding on a high fat diet for 6 weeks to establish AS model.AS rabbits were randomly divided into 3 groups:(1) I/R group,the rabbits were subjected to myocardial ischemia for 35 min and then reperfusion for 12 h;(2) IPoC group,the myocardial ischemia lasted for 35 min,and then reperfusion for 20 s and ischemia for 20 s [a total of 3 cycles(R20s/I20s×3)],and then reperfusion was sustained for 12 h;(3) MT group,minocycline was intravenously injected 10 min before reperfusion.The blood lipids,malondialdehyde(MDA),superoxide dismutase(SOD),soluble cell adhesion molecule(sICAM),myeloperoxidase(MPO),and cardiac troponin T(cTnT) were biochemically determined.The myocardial infarction size(IS) and apoptosis index(AI) were measured by pathological examination.The expression of bcl-2 and caspase-3 was detected in the myocardial tissue by using reverse transcription-polymerase chain reaction(RT-PCR).The results showed that the AS models were successfully established.The myocardial IS,the plasma levels of MDA,sICAM,MPO and cTnT,and the enzymatic activity of MPO were significantly decreased,and the plasma SOD activity was significantly increased in IPoC group and MT group as compared with I/R group(P<0.05 for all).The myocardial AI and the caspase-3 mRNA expression were lower and the bcl-2 mRNA expression was higher in IPoC and MT groups than those in I/R group(all P<0.05).It is concluded that the IPoC and MT can effectively reduce the I/R injury in the AS rabbits,and the mechanisms involved anti-oxidation,anti-inflammation,up-regulation of bcl-2 expression and down-regulation of caspase-3 expression.Minocycline can be used as an effective pharmacologic postconditioning drug to protect myocardia from I/R injury. 展开更多
关键词 MINOCYCLINE pharmacologic postconditioning ischemic postconditioning myocardial ischemia-reperfusion ATHEROSCLEROSIS
下载PDF
Protective Effect of Electroacupuncture and Ischemic Preconditioning on the Circulatory Function in Pigs with Ischemia/Reperfusion Myocardial Injury
6
作者 王祥瑞 郁勤燕 +1 位作者 阎军 孙大金 《Chinese Journal of Integrated Traditional and Western Medicine》 2003年第2期124-127,共4页
Objective: To investigate the effects of electroacupuncture and ischemic preconditioning (IPC) on circulatory function in pigs with myocardial ischemia/reperfusion injury. Method: Eighteen pigs with myocardial ischemi... Objective: To investigate the effects of electroacupuncture and ischemic preconditioning (IPC) on circulatory function in pigs with myocardial ischemia/reperfusion injury. Method: Eighteen pigs with myocardial ischemia/reperfusion injury were randomly allocated into three groups, 6 in each. Group I was the control group, group II was the group that received IPC, and group III was that received both electroacupuncture and IPC. Blood malondialdehyde (MDA), superoxide dismutase (SOD), creatine phos-phokinase (CPK) and its isoenzyme (CK-MB), coronary artery flow and myocardial heat-shock protein (HSP) mRNA expression were detected for evaluation. Results: After treatment, the MDA content was decreased and SOD activities increased significantly in the acupuncture and IPC group compared with the control group (P<0. 05 respectively). The levels of CPK, CK-MB at 20, 60 min after reperfusion were significantly higher than those before treatment, but the levels in group III and group n were remarkably lower than those in group I . HSP70 mRNA expression was found to be increased in group II and group III at 60 min after ischemia/reperfusion compared with those in group I . Conclusion: Electroacupuncture can enhance the myocardial protection of IPC against ischemia/reperfusion injury. The.protective mechanism may be related to the improvement of antioxidation and the increased expression of HSP70 gene. 展开更多
关键词 ELECTROACUPUNCTURE ischemia/reperfusion injury ischemic preconditioning MALONDIALDEHYDE superoxide dismutase
下载PDF
Protective Effects of Zingiberis and Acniti Praeparatae Decoction on Myocardial IschemiaReperfusion Injury in Rats
7
作者 史琴 彭芳 +1 位作者 李娟 赵云华 《Agricultural Science & Technology》 CAS 2014年第8期1370-1373,共4页
This study aimed to investigate the protective effects of zin-giberis and acniti praeparatae decoction on oxidative stress injury induced by my-ocardial ischemia reperfusion in rats. [Method] Myocardial ischemia-reper... This study aimed to investigate the protective effects of zin-giberis and acniti praeparatae decoction on oxidative stress injury induced by my-ocardial ischemia reperfusion in rats. [Method] Myocardial ischemia-reperfusion was performed by ligation of the left anterior descending coronary artery for 30 min, fol-lowed by reperfusion for 60 min. The effects of zingiberis and acniti praeparatae decoction on ECG ST segment, myocardial infarction percentage, malondialdehyde (MDA) content in the serum, superoxide dismutase (SOD) activity and other indica-tors were observed. [Result] Zingiberis and acniti praeparatae decoction could effec-tively inhibit ECG ST segment elevation caused by myocardial ischemia-reperfusion injuries, reduce the percentage of myocardial infarction, decline the content of MDA in the serum, and increase the activity of SOD. [Conclusion] Zingiberis and acniti praeparatae decoction exhibits protective effects on oxidative injuries caused by my-ocardial ischemia-reperfusion injuries in rats, which may be involved in reducing the formation of myocardial free radicals and enhancing antioxidant capacity of my-ocardium. 展开更多
关键词 Zingiberis and acniti praeparatae decoction myocardial ischemia My-ocardial reperfusion injury Oxidative stress
下载PDF
Changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children
8
作者 张宏家 《外科研究与新技术》 2003年第2期111-111,共1页
Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 ... Objective The purpose of this study is to investgate changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children. Methods From June, 1999 to May,2000,45 children (30 male, 15 female) undergoing correction of cardiac defects were divided into three groups randomly: group Ⅰ no myocardial ischemia,group Ⅱ myocardial ischemia less than 60 minutes, group Ⅲmyocardial ischemia 】 60 minutes. There were no significant differences in the three groups in age, sex ratio, C/T ratio, or left ventricular function. Blood samples for analysis were collected before skin incision and at time intervals up to 6 days postoperatively. Analysis of creatine kinase MB.LDH and cardiac-specific troponin I was used for the detection of myocardial damage. Meantime, the ECG was checked for myocardial infarction. After the reperfusion, myocardial tissue was obtained from the free wall of right ventricle myocardial structure studies. Results The level of cTnI was increased 展开更多
关键词 in of Changes of cTnI in myocardial ischemic and reperfusion injury during correction of cardiac defects in children
下载PDF
Calpain system and its involvement in myocardial ischemia and reperfusion injury 被引量:23
9
作者 Christiane Neuhof Heinz Neuhof 《World Journal of Cardiology》 CAS 2014年第7期638-652,共15页
Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria.Numerous experimental studies reveal an essential role of the calpain system in myocardial in... Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria.Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia,reperfusion and postischemic structural remodelling.The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains.Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria.Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria.Calpain inhibition can prevent or attenuate myocardial injury during ischemia,reperfusion,and in later stages of myocardial infarction. 展开更多
关键词 CALPAIN CALPAIN inhibition Calcium OVERLOAD myocardial injury ischemia reperfusion myocardial INFARCTION REMODELLING
下载PDF
Comparative analysis of different cyclosporine A doses on protection after myocardial ischemia/reperfusion injury in rat 被引量:6
10
作者 Kang Huang Shi-Juan Lu +3 位作者 Jiang-Hua Zhong Qun Xiang Liu Wang Miao Wu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第2期144-148,共5页
Objective:To investigate the protective effect of different cyclosporin A(CsA)doses on myocardial ischemia/reperfusion injury in rat models.Methods:A rat model of myocardial ischemia/reperfusion injury was established... Objective:To investigate the protective effect of different cyclosporin A(CsA)doses on myocardial ischemia/reperfusion injury in rat models.Methods:A rat model of myocardial ischemia/reperfusion injury was established in vivo and the rats were randomly divided into four groups:placebo(PBS;T1),low-dose(CsA dose:1.0 mg/kg:T2),medium-dose(CsA dose:2.5 mg/kg:T3),and high-dose(CsA dose:5.0 mg/kg;T4)groups.Heart function indexes were monitored at different time points,the extent of myocardial infarction was assessed by Evans Blue-TTC staining,and creatine kinase MB mass and cardiac troponin 1 values were measured by biochemical assays.Results:Compared with the T1 and T2 groups,both the creatine kinase MB mass and cardiac troponin 1 were significantly lower in the T3 and T4 groups(P<0.05).The mean arterial pressure(MAP)and left ventricular systolic pressure(LVSP)decreased sequentially in each group,with the extending reperfusion time.Significant decreases in LVSP and MAP were observed in the T3 and T4 groups as compared to the T1 and T2 group(P<0.05)and the T2 group showed a significantly lower LVSP and MAP decline than the T1 group(P<0.05).Compared with the Tl group,the rats from the T2.T3,and T4 groups suffered from a significantly lower extent of myocardial infarction(P<0.05).Also,the a animals in the T3 and T4 groups had a significantly smaller extent of myocardial infarction than those in the T2 group(P<0.05).Conclusions:Various CsA doses exert different degrees of protection against ischemia/reperfusion injury,and this protective effect peaks at approximately 2.5 mg/kg in rat models. 展开更多
关键词 CYCLOSPORIN A myocardial ischemIA/reperfusion injury MITOCHONDRIAL PERMEABILITY transition PORE
下载PDF
Effect of rosiglitazone on rabbit model of myocardial ischemia-reperfusion injury 被引量:5
11
作者 Xia-Qing Gao Hua-Wei Li +3 位作者 Xue Ling Ya-Hui Qiu Yue Gao Yang Zhang 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2013年第3期228-231,共4页
To explore mechanism and protective effect of rosiglitazone on myocardial ischemia reperfusion(I/R) injury.Methods:A total of 48 male Japanese white big-ear rabbits were randomly divided into control group(A),I/R grou... To explore mechanism and protective effect of rosiglitazone on myocardial ischemia reperfusion(I/R) injury.Methods:A total of 48 male Japanese white big-ear rabbits were randomly divided into control group(A),I/R group(B),low dose of rosiglitazone group(C),high dose of rosiglitazone group(D).Plasma concentration of and also reduced the concentration of plasma serum creatine kinase(CK),CK-MB.high-sensitivity C-reactive protein(hsCRP).ultrasuperoxide dismutase(SOD),malondialdehyde(MD.A).lactic acid glutathione skin peroxidase (C-SH-PX).nitric oxide(NO)and endothelin(ET) were measured 1 h later after I/R.Twenty-four hours after I/R the hearts were harvested for pathological and ultrastructural analysis.Area of myocardial infarction were tested.Results:Plasma concentration of CK,Ck-MB.hsCRP,NO. MDA and ET were decreased in C,D group compared with group B.Plasma concentration of T-SOD and GSH-Px were increased significantly in C.D group compared with group B.Compared with group B.pathological and ullraslructural changes in C and D group were slightly.There was significant difference in myocardial infarction area between group C.D and group B(P【0.05). Myocardial infarction area and arrhythmia rate were lower in group C,D compare with group B. Rosiglitazone may protect myocardium from I/R injury by enhancing T-SOD and GSH-Px concentration,inhibit inflammatory reaction,and improve endothelial function. 展开更多
关键词 ROSIGLITAZONE ischemIA reperfusion injury myocardial INFARCTION
下载PDF
MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury 被引量:15
12
作者 Li-Feng Liu Zhuo Liang +5 位作者 Zhen-Rong Lv Xiu-Hua Liu Jing Bai Jie Chen Chen Chen Yu Wang 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2012年第1期28-32,共5页
Objective Several studies have indicated that miR-15a,miR-15b and miR-16 may be the important regulators of apoptosis.Since attenuate apoptosis could protect myocardium and reduce infarction size,the present study was... Objective Several studies have indicated that miR-15a,miR-15b and miR-16 may be the important regulators of apoptosis.Since attenuate apoptosis could protect myocardium and reduce infarction size,the present study was aimed to find out whether these miRNAs participate in regulating myocardial ischemia reperfusion (I/R) injury.Methods Apoptosis in mice hearts subjected to I/R was detected by TUNEL assay in vivo,while flow cytometry analysis followed by Annexin V/PI double stain in vitro was used to detect apoptosis in cultured cardiomyocytes which were subjected to hypoxia/reoxygenation (H/R).Taqman real-time quantitative PCR was used to confirm whether miR-15a/15b/16 were involved in the regulation of cardiac I/R and H/R.Results Compared to those of the controls,I/R or H/R induced apoptosis of cardiomyocytes was significantly iucreased both in vivo (24.4% ± 9.4% vs.2.2% ± 1.9%,P < 0.01,n =5) and in vitro (14.12% ±0.92% vs.2.22% ± 0.08%).The expression of miR-15a and miR-15b,but not miR-16,was increased in the mice I/R model,and the results were consistent in the H/R model.Conclusions Our data indicate miR-15 and miR-15b are up-regulated in response to cardiac I/R injury,therefore,down-regulation of miR- 15a/b may be a promising strategy to reduce myocardial apoptosis induced by cardiac I/R injury. 展开更多
关键词 miR-15a/b APOPTOSIS myocardial reperfusion injury ischemia/reperfusion injury
下载PDF
The expression of oxidative stress genes related to myocardial ischemia reperfusion injury in patients with ST-elevation myocardial infarction 被引量:6
13
作者 Qian-lin Gu Peng Jiang +4 位作者 Hui-fen Ruan Hao Tang Yang-bing Liang Zhong-fu Ma Hong Zhan 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2022年第2期106-113,共8页
BACKGROUND:We aimed to investigate the gene expression of myocardial ischemia/reperfusion injury(MIRI)in patients with acute ST-elevation myocardial infarction(STEMI)using stress and toxicity pathway gene chip technol... BACKGROUND:We aimed to investigate the gene expression of myocardial ischemia/reperfusion injury(MIRI)in patients with acute ST-elevation myocardial infarction(STEMI)using stress and toxicity pathway gene chip technology and try to determine the underlying mechanism.METHODS:The mononuclear cells were separated by ficoll centrifugation,and plasma total antioxidant capacity(T-AOC)was determined by the ferric reducing ability of plasma(FRAP)assay.The expression of toxic oxidative stress genes was determined and verified by oligo gene chip and quantitative real-time polymerase chain reaction(qRT-PCR).Additionally,gene ontology(GO)enrichment analysis was performed on DAVID website to analyze the potential mechanism further.RESULTS:The total numbers of white blood cells(WBC)and neutrophils(N)in the peripheral blood of STEMI patients(the AMI group)were significantly higher than those in the control group(WBC:11.67±4.85×10^(9)/L vs.6.41±0.72×10^(9)/L,P<0.05;N:9.27±4.75×10^(9)/L vs.3.89±0.81×10^(9)/L,P<0.05),and WBCs were significantly associated with creatine kinase-myocardial band(CK-MB)on the first day(Y=8.945+0.018X,P<0.05).In addition,the T-AOC was significantly lower in the AMI group comparing to the control group(12.80±1.79 U/mL vs.20.48±2.55 U/mL,P<0.05).According to the gene analysis,eight up-regulated differentially expressed genes(DEGs)included GADD45A,PRDX2,HSPD1,DNAJB1,DNAJB2,RAD50,TNFSF6,and TRADD.Four down-regulated DEGs contained CCNG1,CAT,CYP1A1,and ATM.TNFSF6 and CYP1A1 were detected by polymerase chain reaction(PCR)to verify the expression at different time points,and the results showed that TNFSF6 was up-regulated and CYP1A1 was down-regulated as the total expression.GO and kyoto encyclopedia of genes and genomes(KEGG)enrichment analysis suggested that the oxidative stress genes mediate MIRI via various ways such as unfolded protein response(UPR)and apoptosis.CONCLUSIONS:WBCs,especially neutrophils,were the critical cells that mediating reperfusion injury.MIRI was regulated by various genes,including oxidative metabolic stress,heat shock,DNA damage and repair,and apoptosis-related genes.The underlying pathway may be associated with UPR and apoptosis,which may be the novel therapeutic target. 展开更多
关键词 Acute myocardial infarction myocardial ischemia/reperfusion injury Oxidative stress TNFSF6 CYP1A1 Unfolded protein response
下载PDF
Effect and mechanism of salvianolic acid B on the myocardial ischemiareperfusion injury in rats 被引量:24
14
作者 Ling Xue Zhen Wu +2 位作者 Xiao-Ping Ji Xia-Qing Gao Yan-Hua Guo 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第4期280-284,共5页
Objective:To investigate the effect of salvianolic acid B on rats with myocardial ischemiareperfusion injury.Methods:SD rats were randomly divided into five groups(n=10 in each group):A sham operation group,B ischemic... Objective:To investigate the effect of salvianolic acid B on rats with myocardial ischemiareperfusion injury.Methods:SD rats were randomly divided into five groups(n=10 in each group):A sham operation group,B ischemic reperfusion group model group,C low dose salvianolic acid B group,D median dose salvianolic acid B group,E high dose salvianolic acid B group.One hour after establishment of the myocardial ischemia-reperfusion model,the concentration and the apoptotic index of the plasma level of myocardial enzymes(CTnⅠ,CKMB),SOD,MDA,NO,ET were,measured.Heart tissues were obtained and micro-structural changes were observed.Results:Compared the model group,the plasma CTnⅠ,CK-MB,MDA and ET contents were significantly increased,NO,T-SOD contents were decreased in the treatment group(group C,D,and E)(P<0.05);compared with group E,the plasma CTnⅠ,CKMB,MDA and ET levels were increased,the NO,T-SOD levels were decreased in groups C and D(P<0.05).Infarct size was significantly reduced,and the myocardial ultrastructural changes were improved significantly in treatment group.Conclusions:Salvianolic acid B has a significant protective effect on myocardial ischemia-reperfusion injury.It can alleviate oxidative stress,reduce calcium overload,improve endothelial function and so on. 展开更多
关键词 ischemIA-reperfusion injury myocardial INFARCTION Salvianolic ACID B INFLAMMATORY response
下载PDF
The role of glycogen synthase kinase 3 beta in brain injury induced by myocardial ischemia/reperfusion injury in a rat model of diabetes mellitus 被引量:8
15
作者 Bo Zhao Wen-wei Gao +5 位作者 Ya-jing Liu Meng Jiang Lian Liu Quan Yuan Jia-bao Hou Zhong-yuan Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1632-1639,共8页
Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role o... Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear.In this study,we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats.Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin.Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery.Post-conditioning comprised three cycles of ischemia/reperfusion.Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion,the structure of the brain was seriously damaged in the experimental rats compared with normal controls.Expression of Bax,interleukin-6,interleukin-8,terminal deoxynucleotidyl transferase d UTP nick end labeling,and cleaved caspase-3 in the brain was significantly increased,while expression of Bcl-2,interleukin-10,and phospho-glycogen synthase kinase 3 beta was decreased.Diabetes mellitus can aggravate inflammatory reactions and apoptosis.Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes.Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glycogen synthase kinase 3 beta.According to these results,glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration myocardial ischemia/reperfusion injury brain injury glycogen synthase kinase 3 beta ischemic post-conditioning diabetes mellitus neural regeneration
下载PDF
Myocardial ischemia-reperfusion injury:Possible role of melatonin 被引量:5
16
作者 Alberto Dominguez-Rodriguez Pedro Abreu-Gonzalez 《World Journal of Cardiology》 CAS 2010年第8期233-236,共4页
Our knowledge and understanding of the pathophysiology of coronary atherosclerosis has increased enormously over the last 20 years.Reperfusion through thrombolysis or percutaneous coronary angioplasty is the standard ... Our knowledge and understanding of the pathophysiology of coronary atherosclerosis has increased enormously over the last 20 years.Reperfusion through thrombolysis or percutaneous coronary angioplasty is the standard treatment for preventing acute myocardial infarction.Early reperfusion is an absolute prerequisite for survival of the ischemic myocardium,but reperfusion itself may lead to accelerated and additional myocardial injury beyond that generated by ischemia alone.These outcomes,in a range of reperfusion-associated pathologies,are collectively termed "reperfusion injuries".Reactive oxygen species are known to be produced in large quantities in the first few minutes of the post-ischemia reperfusion process.Similarly,scientific evidence from the last 15 years has suggested that melatonin has beneficial effects on the cardiovascular system.The presence of vascular melatoninergic receptor binding sites has been demonstrated;these receptors are functionally linked to vasoconstrictor or vasodilatory effects of melatonin.It has been shown that patients with coronary heart disease have a low melatonin production rate,especially those with higher risk of cardiac infarction and/or sudden death.Melatonin attenuates molecular and cellular damage resulting from cardiac ischemia-reperfusion in which destructive free radicals are involved. 展开更多
关键词 ischemIA-reperfusion injury MELATONIN Acute myocardial INFARCTION Reactive oxygen species Primary PERCUTANEOUS CORONARY intervention
下载PDF
Epac1/Rap1 signaling pathway is involved in the pathogenesis of myocardial ischemia/reperfusion injury in rats 被引量:1
17
作者 Xin WANG Xia CHE +2 位作者 Qin JIANG Gong-liang ZHANG Liu-yi DONG 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第4期309-310,共2页
OBJECTIVE In this study we explored the role of Epac1-Rap1 pathway in the acute myocardial ischemia/reperfusion injury(MIRI) in vitro and in vivo.METHODS An acute myocardial ischemia/reperfusion injury model was estab... OBJECTIVE In this study we explored the role of Epac1-Rap1 pathway in the acute myocardial ischemia/reperfusion injury(MIRI) in vitro and in vivo.METHODS An acute myocardial ischemia/reperfusion injury model was established by the ligation of left anterior descending coronary.Myocardial architecture,fibers and apoptosis was evaluated by the Masson trichrome staining,Sirius red staining and TUNEL assay.H9c2 cells were subjected to hypoxia for 5 h followed by 1-h reoxygen.ation in vitro.Cell viability was measured by MTT assay and cellular injury was evaluated by measuring the release of lactate dehydrogenase(LDH).Western blot,real-time PCR and immunofluorescence were used to detect the expressions of Epac1 and relative downstream molecules.RESULTS Myocardial IR-induced cardiac apoptosis and accumulation of Epac1 and Rap1 in rat IR injury model.Direct Epac activation by 8-CPT(8-(4-chlorophenylthio)-2′-O-methyl-cAMP) exacerbated cardiomyocyte death and dysfunction following hypoxia-reoxygenation(H/R),selective activation of Epac in response to H/R was evident which enriched for cytosolic/membrane proteins and mRNA.Harmacological inhibitor of Epac(ESI-09) significantly ameliorated myocardial injury with the decline of Epac expression.Epac inhibitor and agonist studies also implicated the effect of Rap1,which is downstream of Epac in this pathway.The expression of Rap1 elevated when activated by Epac agonist and was blocked by Epac inhibitor.The same result was true for myocyte CaMK-II and intracellular calcium ions activation.Moreover,ESI-09 also increased ERK1/2 phosphorylation.CONCLUSION Our study reveal that Epac1/Rap1 signaling pathway is involved in the pathogenesis of myocardial I/R injury in rats,which provides evidence on the development of therapeutic strategies target this pathway for myocardial I/R injury. 展开更多
关键词 急性心肌缺血 冠状动脉 治疗方法 临床分析
下载PDF
Large animal models of cardiac ischemia-reperfusion injury:Where are we now? 被引量:2
18
作者 Attaur Rahman Yuhao Li +6 位作者 To-Kiu Chan Hui Zhao Yaozu Xiang Xing Chang Hao Zhou Dachun Xu Sang-Bing Ong 《Zoological Research》 SCIE CAS CSCD 2023年第3期591-603,共13页
Large animal models of cardiac ischemia-reperfusion are critical for evaluation of the efficacy of cardioprotective interventions prior to clinical translation.Nonetheless,current cardioprotective strategies/intervent... Large animal models of cardiac ischemia-reperfusion are critical for evaluation of the efficacy of cardioprotective interventions prior to clinical translation.Nonetheless,current cardioprotective strategies/interventions formulated in preclinical cardiovascular research are often limited to small animal models,which are not transferable or reproducible in large animal models due to different factors such as:(i)complex and varied features of human ischemic cardiac disease(ICD),which are challenging to mimic in animal models,(ii)significant differences in surgical techniques applied,and(iii)differences in cardiovascular anatomy and physiology between small versus large animals.This article highlights the advantages and disadvantages of different large animal models of preclinical cardiac ischemic reperfusion injury(IRI),as well as the different methods used to induce and assess IRI,and the obstacles faced in using large animals for translational research in the settings of cardiac IR. 展开更多
关键词 Cardiovascular disorder ischemic cardiac disease ischemic-reperfusion injury Large animal model myocardial infarction Translational gap
下载PDF
Studies on the Role of Sodium/Hydrogen Exchange System in Myocardial Ischemia-Reperfusion Injury
19
作者 涂旗胜 叶世铎 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 1995年第1期50-54,共5页
This study aimed at the exploration of the relationship between Na+-H+ exchange system and myocardial ischemia-reperfusion injury(MRI)in an attempt to provide a theoretic basis for the prevention and treatment of MRI.... This study aimed at the exploration of the relationship between Na+-H+ exchange system and myocardial ischemia-reperfusion injury(MRI)in an attempt to provide a theoretic basis for the prevention and treatment of MRI.We used the isolated working guinea pig hearts as the experimental model to mimick cardiopulmonary bypass,which included 120 min hypothermic ischemic cardioplegic arrest followed by 60 min normothermic reperfusion.The hearts were divided into 2 groups:the control group receiving St.Thomas'Hospital Solution(STS)and the treated group receiving STS+ amiloride,a Na+-H+ exchangeblocker.The results showed that during reperfusion,[Na+]i and [Ca2+]i overloads,poor recovery of cardiac function,increases in CPK release and OFR generation,reduction of ATP content and serious damage of ultrastructure were seen in group 1;whereas there were no [Na+]i and [Ca2+]i overloads and better recovery of cardiac function accompanied by improved results of biochemical assay and less damage of ultrastructure was found in group 2.Our study indicates that amiloride can inhibit Na+-H+ exchange system in cardiac cells during early reperfusion period,which prevents [Na+]i overload produced by Na+-H+ exchange,and stops Na+-Ca2+ exchange activated by high level of [Na+]i,thus attenuating [Ca2+]ioverload caused by Na+-Ca2+ exchange and myocardial injury.Therefore,we conclude that Na+-H+ exchange blocker,amiloride,can exert significant protective effects on MRI and its use may prove to be a new clinical approach to prevention and cure of MRI. 展开更多
关键词 Na+-H+ exchange myocardial reperfusion injury guinea-pig heart
下载PDF
Acupuncture preconditioning protects against myocardial ischemia/reperfusion injury mediated apoptosis through miR-214/NCX1 activation: a hypothesis
20
作者 Hai-Long Fan Yu-Lan Ren +1 位作者 Li-Zhen Yang Fei Wu 《Traditional Medicine Research》 2019年第4期178-183,共6页
Early reperfusion of ischemic cardiac tissue is usually the best option to improve clinical outcome of angina pectoris, especially of acute myocardial infarction. However, myocardial reperfusion may cause an abnormal ... Early reperfusion of ischemic cardiac tissue is usually the best option to improve clinical outcome of angina pectoris, especially of acute myocardial infarction. However, myocardial reperfusion may cause an abnormal increase of intracellular Ca^2+-mediated cardiomyocyte death and consequent loss of cardiac function, which is referred to myocardial ischemia/reperfusion (I/R) injury. Recently, the microRNA-214 (miR-214)/Na^+/Ca^2+ exchanger (NCX) 1 co-expression is a key factor in cellular protection against myocardial apoptosis for myocardial I/R injury. Once activated, miR-214/NCX1 axis can inhibit several Ca^2+ downstream signaling effectors that mediate cell death simultaneously. Studies have shown that acupuncture preconditioning has a protective effect on myocardial I/R injury, but its mechanism deserves further research. It has been proved that acupuncture preconditioning for ischemic myocardium successfully inhibit multiple Ca2+ handling related microRNAs that mediate cell death pathways, and miR-214 is one of its targets. In terms of clinical practice, coronary heart disease (CHD) patients benefit a lot from this intervention. However, there is barely no study correlating acupuncture preconditioning to the miR-214/NCX1 co-expression in patients with CHD. This review aims to discuss whether there is some evidence to justify a recommendation of acupuncture preconditioning in CHD patients as a non-pharmacological therapeutic method to activate the miR-214/NCX1 co-expression network model. 展开更多
关键词 MiR-214/NCX1 Acupuncture PRECONDITIONING Coronary heart disease myocardial ischemIA reperfusion injury
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部