This review summarizes the data on the functional significance of ubiquitous(NKCC1)and renal-specific(NKCC2)isoforms of electroneutral sodium,potassium and chloride cotransporters.These carriers contribute to the path...This review summarizes the data on the functional significance of ubiquitous(NKCC1)and renal-specific(NKCC2)isoforms of electroneutral sodium,potassium and chloride cotransporters.These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid,respectively.Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume.However,the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds.展开更多
基金This work was supported by grants from the Canadian Institutes for Health Research(MOP-81392)(S.N.O.)Russian Foundation for Fundamental Research##14-04-31705(S.V.K.),15-04-00101(S.N.O.)+1 种基金the Russian Scientific Foundation#14-15-00006(S.N.O.)the USA National Institutes of Health Award R01-GM85058(N.O.D.).
文摘This review summarizes the data on the functional significance of ubiquitous(NKCC1)and renal-specific(NKCC2)isoforms of electroneutral sodium,potassium and chloride cotransporters.These carriers contribute to the pathogenesis of hypertension via regulation of intracellular chloride concentration in vascular smooth muscle and neuronal cells and via sensing chloride concentration in the renal tubular fluid,respectively.Both NKCC1 and NKCC2 are inhibited by furosemide and other high-ceiling diuretics widely used for attenuation of extracellular fluid volume.However,the chronic usage of these compounds for the treatment of hypertension and other volume-expanded disorders may have diverse side-effects due to suppression of myogenic response in microcirculatory beds.