AIM: To investigate the effect of ascorbic acid (AA) dietary supplementation on myenteric neurons and epithelial cell proliferation of the jejunum of adult rats with chronic diabetes mellitus. METHODS: Thirty rats at ...AIM: To investigate the effect of ascorbic acid (AA) dietary supplementation on myenteric neurons and epithelial cell proliferation of the jejunum of adult rats with chronic diabetes mellitus. METHODS: Thirty rats at 90 d of age were divided into three groups: Non-diabetic, diabetic and diabetic treated with AA (DA) (1 g/L). After 120 d of treatment with AA the animals were killed. The myenteric neurons were stained for myosin-V and analyzed quantitatively in an area of 11.2 mm2/animal. We further measured the cellular area of 500 neurons per group. We also determined the metaphasic index (MI) of the jejunum mucosa layer of about 2500 cells in the intestinal crypts, as well as the dimensions of 30 villi and 30 crypts/animal. The data area was analyzed using the Olympus BX40 microscope. RESULTS: There was an increase of 14% in the neuronal density (792.6 ± 46.52 vs 680.6 ± 30.27) and 4.4% in the cellular area (303.4 ± 5.19 vs 291.1 ± 6.0) respectively of the diabetic group treated with AA when compared to control diabetic animals. There were no signifi cant differences in MI parameters, villi height or crypt depths among the groups.CONCLUSION: Supplementation with AA in the diabetic animal promoted moderate neuroprotection. There was no observation of alteration of the cellular proliferation of the jejunum mucosa layer of rats with chronic diabetes mellitus with or without supplementation with AA.展开更多
Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors...Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.展开更多
基金Supported by Funds from CNPq,No. 133834/2003-4Fundao Araucária, No. 023
文摘AIM: To investigate the effect of ascorbic acid (AA) dietary supplementation on myenteric neurons and epithelial cell proliferation of the jejunum of adult rats with chronic diabetes mellitus. METHODS: Thirty rats at 90 d of age were divided into three groups: Non-diabetic, diabetic and diabetic treated with AA (DA) (1 g/L). After 120 d of treatment with AA the animals were killed. The myenteric neurons were stained for myosin-V and analyzed quantitatively in an area of 11.2 mm2/animal. We further measured the cellular area of 500 neurons per group. We also determined the metaphasic index (MI) of the jejunum mucosa layer of about 2500 cells in the intestinal crypts, as well as the dimensions of 30 villi and 30 crypts/animal. The data area was analyzed using the Olympus BX40 microscope. RESULTS: There was an increase of 14% in the neuronal density (792.6 ± 46.52 vs 680.6 ± 30.27) and 4.4% in the cellular area (303.4 ± 5.19 vs 291.1 ± 6.0) respectively of the diabetic group treated with AA when compared to control diabetic animals. There were no signifi cant differences in MI parameters, villi height or crypt depths among the groups.CONCLUSION: Supplementation with AA in the diabetic animal promoted moderate neuroprotection. There was no observation of alteration of the cellular proliferation of the jejunum mucosa layer of rats with chronic diabetes mellitus with or without supplementation with AA.
基金supported by the National University of Singapore Graduate School for Integrative Sciences and Engineering(to BLT)
文摘Membrane trafficking processes are presumably vital for axonal regeneration after injury, but mechanistic understanding in this regard has been sparse. A recent loss-of-function screen had been carried out for factors important for axonal regeneration by cultured cortical neurons and the results suggested that the activity of a number of Rab GTPases might act to restrict axonal regeneration. A loss of Rab27b, in particular, is shown to enhance axonal regeneration in vitro, as well as in C. elegans and mouse central nervous system injury models in vivo. Possible mechanisms underlying this new finding, which has important academic and translational implication, are discussed.