The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNA...The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies.展开更多
Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve...Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.展开更多
Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic o...Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic operation pose challenges in achieving both high safety and reaction efficiency.In this study,a continuous cyanoethylation of phenylamine for synthesizing N,N-dicyanoethylaniline in a microreactor system has been developed.By optimizing the reaction conditions,the reaction time was significantly reduced from over 2 h in batch operation to approximately 14 min in the microreactor,while high conversion and selectivity were maintained.Based on the reaction network constructed,the reaction kinetics was established,and the kinetic parameters were then determined.These findings provide valuable insights into a controllable cyanoethylation reaction,which would be helpful for the design of efficient processes and optimization of reactors.展开更多
As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated th...As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated that the tumour microenvironment(TME)regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells,thus affecting the progression and prognosis of CRC.However,with the diversity in the composition of TME factors,this action is reci-procal and complex.Encouragingly,some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation.This review summarizes the data,supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC.We also review the role of m6A modification in the diagnosis,treatment,and prognostic assessment of CRC and discuss the current status,limitations,and potential clinical value of m6A modification in this field.We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.展开更多
Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce th...Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.展开更多
N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modi...N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 p...BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.展开更多
Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and...Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.展开更多
Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c...Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.展开更多
Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real...Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real health problems attributable to a lack of monitoring of the vaccination schedule, inadequate compliance with biosecurity measures and poor application of the Ichikawa rule based on the 5 M’s. Objective: The aim of this article is to identify the microorganisms responsible for contamination of poultry farms in the study area. Method: The study was carried out from 28/04/2022 to 31/01/2023 on the basis of 300 samples taken from feed, drinking water, droppings and scrapings from poultry housing surfaces in the 30 farms that served as a framework for our research. Sampling was of the simple random type, and farms were selected on the basis of the farmers’ consent. The data were recorded on pre-established survey forms. Our study was cross-sectional, descriptive and prospective. Bacteria were isolated using the reference method NF EN ISO 6579 for Salmonella spp. and cultured on the specific medium eosin methylene blue (EMB) for Escherichia coli, Pseudomonas and Citrobacter freundii. Results: The following results emerged from this study: Escherichia coli (5.33%), Pseudomonas (1.33%), Citrobacter freundii (12%) and Salmonella paratyphi (21.68%). Conclusion: Of the 300 samples analysed, 121 (40.33%) were contaminated with pathogens. This high level of contamination is a health problem. The study shows that biosecurity is less satisfactory on the farms visited. Nevertheless, farms with a very satisfactory level of biosafety ensure food safety and variety for the population.展开更多
基金funded by Notingham University and the Neuroscience Support Group Charity,UK(to HMK)supported by a CONACYT PhD scholarshipMD?was supported by the Postdoctoral Research Fellowship Program of TUBITAK。
文摘The study of modified RNA known as epitranscriptomics has become increasingly relevant in our understanding of disease-modifying mechanisms.Methylation of N6 adenosine(m^(6)A)and C5 cytosine(m^(5)C)bases occur on mRNAs,tRNA,mt-tRNA,and rRNA species as well as non-coding RNAs.With emerging knowledge of RNA binding proteins that act as writer,reader,and eraser effector proteins,comes a new understanding of physiological processes controlled by these systems.Such processes when spatiotemporally disrupted within cellular nanodomains in highly specialized tissues such as the brain,give rise to different forms of disease.In this review,we discuss accumulating evidence that changes in the m^(6)A and m^(5)C methylation systems contribute to neurocognitive disorders.Early studies first identified mutations within FMR1 to cause intellectual disability Fragile X syndromes several years before FMR1 was identified as an m^(6)A RNA reader protein.Subsequently,familial mutations within the m^(6)A writer gene METTL5,m^(5)C writer genes NSUN2,NSUN3,NSUN5,and NSUN6,as well as THOC2 and THOC6 that form a protein complex with the m^(5)C reader protein ALYREF,were recognized to cause intellectual development disorders.Similarly,differences in expression of the m^(5)C writer and reader effector proteins,NSUN6,NSUN7,and ALYREF in brain tissue are indicated in individuals with Alzheimer's disease,individuals with a high neuropathological load or have suffered traumatic brain injury.Likewise,an abundance of m^(6)A reader and anti-reader proteins are reported to change across brain regions in Lewy bodies diseases,Alzheimer's disease,and individuals with high cognitive reserve.m^(6)A-modified RNAs are also reported significantly more abundant in dementia with Lewy bodies brain tissue but significantly reduced in Parkinson's disease tissue,whilst modified RNAs are misplaced within diseased cells,particularly where synapses are located.In parahippocampal brain tissue,m^(6)A modification is enriched in transcripts associated with psychiatric disorders including conditions with clear cognitive deficits.These findings indicate a diverse set of molecular mechanisms are influenced by RNA methylation systems that can cause neuronal and synaptic dysfunction underlying neurocognitive disorders.Targeting these RNA modification systems brings new prospects for neural regenerative therapies.
基金support of the Natural Science Foundation of China(U21A20218)the National Key Research and Development Program(2021YFD1700202-02)+1 种基金the Agricultural Research System of China(CARS-22-G-12)the Fostering Foundation for the Excellent Ph.D.Dissertation of Gansu Agricultural University(YB2024002).
文摘Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.
基金the financial supports from National Natural Science Foundation of China(22378344,22208278)Natural Science Foundation of Shandong Province(ZR2023MB120,ZR2023QB152)Youth Innovation Team Plan of Shandong Province(2022KJ270)。
文摘Cyanoethylation of phenylamine is one of the important steps for the production of dicyanoethyl-based disperse dyes.However,the exothermic nature of this reaction and the inherent instability of intermittent dynamic operation pose challenges in achieving both high safety and reaction efficiency.In this study,a continuous cyanoethylation of phenylamine for synthesizing N,N-dicyanoethylaniline in a microreactor system has been developed.By optimizing the reaction conditions,the reaction time was significantly reduced from over 2 h in batch operation to approximately 14 min in the microreactor,while high conversion and selectivity were maintained.Based on the reaction network constructed,the reaction kinetics was established,and the kinetic parameters were then determined.These findings provide valuable insights into a controllable cyanoethylation reaction,which would be helpful for the design of efficient processes and optimization of reactors.
基金Supported by the National Natural Science Foundation of China,No.82100599 and No.81960112the Jiangxi Provincial Department of Scientific introductions,No.20212ACB216003 and No.20242BAB26122+1 种基金the Science and Technology Plan of Jiangxi Provincial Administration of Traditional Chinese Medicine,No.2023Z021the Young Talents Project of Jiangxi Provincial Academic and Technical Leaders Training Program for Major Disciplines,No.20204BCJ23022.
文摘As a research hotspot in the field of molecular biology,N6-methyladenosine(m6A)modification has made progress in the treatment of colorectal cancer(CRC),leukemia and other cancers.Numerous studies have demonstrated that the tumour microenvironment(TME)regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells,thus affecting the progression and prognosis of CRC.However,with the diversity in the composition of TME factors,this action is reci-procal and complex.Encouragingly,some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation.This review summarizes the data,supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC.We also review the role of m6A modification in the diagnosis,treatment,and prognostic assessment of CRC and discuss the current status,limitations,and potential clinical value of m6A modification in this field.We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
基金supported by the National Natural Science Foundation of China(Grant No.32101489)Forestry Science and Technology Innovation Program of Hunan Province(Grant No.XLK202101-2)Science and Technology Innovation Platform and Talent Program of Hunan Province(Grant Nos.2023RC3164,2021NK1007)。
文摘Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera.
基金Key Project Research and Development Plan of Hainan Province(No.ZDYF2020134,ZDYF2022SHFZ283)Natural Science Foundation of Hainan Province(No.821QN391)。
文摘N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.
基金Natural Science Foundation of Shandong Province,No.ZR2020MH207 and No.ZR2020MH251.
文摘BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.
基金funded by the Scarce and Quality Economic Forest Engineering Technology Research Center(2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province(Grant No.JSBEM-S-202305).
文摘Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.
文摘Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.
文摘Introduction: On the outskirts of Ndjamena, semi-industrial poultry farming and traditional poultry farming are practised informally on almost all poultry farms in Chad. This type of poultry farming is faced with real health problems attributable to a lack of monitoring of the vaccination schedule, inadequate compliance with biosecurity measures and poor application of the Ichikawa rule based on the 5 M’s. Objective: The aim of this article is to identify the microorganisms responsible for contamination of poultry farms in the study area. Method: The study was carried out from 28/04/2022 to 31/01/2023 on the basis of 300 samples taken from feed, drinking water, droppings and scrapings from poultry housing surfaces in the 30 farms that served as a framework for our research. Sampling was of the simple random type, and farms were selected on the basis of the farmers’ consent. The data were recorded on pre-established survey forms. Our study was cross-sectional, descriptive and prospective. Bacteria were isolated using the reference method NF EN ISO 6579 for Salmonella spp. and cultured on the specific medium eosin methylene blue (EMB) for Escherichia coli, Pseudomonas and Citrobacter freundii. Results: The following results emerged from this study: Escherichia coli (5.33%), Pseudomonas (1.33%), Citrobacter freundii (12%) and Salmonella paratyphi (21.68%). Conclusion: Of the 300 samples analysed, 121 (40.33%) were contaminated with pathogens. This high level of contamination is a health problem. The study shows that biosecurity is less satisfactory on the farms visited. Nevertheless, farms with a very satisfactory level of biosafety ensure food safety and variety for the population.
文摘在燃料电池中,碳基氧还原反应(ORR)催化剂被认为是昂贵的铂基催化剂的潜在替代品。近年来,由过渡金属和氮原子共掺杂的碳基材料(M-N-C)以其低成本和优异的活性而受到研究人员的广泛关注。在此,通过精心设计的杨桃状MOF (ZIF-8@ZIF-67)为前驱体,采用简单的一步热解法制备钴、氮共掺杂多孔炭材料(命名为Co-N@CNT-C800)。CoN@CNT-C800产生了大量碳纳米管(CNT),独特的三维结构保证了较高的比表面积和孔隙率,有利于ORR的传质和电子传递。同时,Co-N@CNT-C800在碱性介质中表现出优异的半波电位和极限电流密度,分别为0.841 V和5.07 m A·cm^(-2)。此外,与商用Pt/C材料相比,Co-N@CNT-C800还表现出优异的电化学稳定性和耐甲醇毒性。该策略为制备低成本、高活性的能量转换电催化剂提供了一种有效的方法。