Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr...Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.展开更多
Field and glasshouse experiments were conducted to study the effect of B. japonicum inoculation and phosphorus supplementation on macronutrient uptake by soybean. The treatments consisted of B. japonicum inoculation (...Field and glasshouse experiments were conducted to study the effect of B. japonicum inoculation and phosphorus supplementation on macronutrient uptake by soybean. The treatments consisted of B. japonicum inoculation (with & without), phosphorus supplementation at the levels of 0, 20, 40 and 80 kg P·ha-1. Both treatments were replicated four times in a split plot design. The macronutrients considered were N, P, K, Ca and Mg. Results showed that inoculation with B. japonicum significantly contribute to the uptake of N, P, K, Ca and Mg in roots, shoots, pods and the whole soybean plant. Likewise, phosphorus supplementation significantly enhanced the uptake of N, P, K, Ca and Mg in roots, shoots, pods and the whole plant. The use of effective strains of rhizobia and P supplementation was an effective way of enhancing the growth of soybean, eventually the uptake of macronutrients in plant organs.展开更多
Application of sound waves is one of the novel techniques for the improvement of water treatment process. In this study, various sound waves such as 1) ultrasonic wave, 2) music box, and 3) windbell were irradiated to...Application of sound waves is one of the novel techniques for the improvement of water treatment process. In this study, various sound waves such as 1) ultrasonic wave, 2) music box, and 3) windbell were irradiated to water and wastewater for removing contaminants such as nitrate, phosphorus and BOD/COD. As a result, a possibility of improvement of water and wastewater treatment process using sound waves with various frequencies was proposed.展开更多
Three equal field plots were cultivated with respectively wheat, field pea and faba bean. The common conventional production technology, including the use of chemical fertilizers was applied in wheat, but no fertilize...Three equal field plots were cultivated with respectively wheat, field pea and faba bean. The common conventional production technology, including the use of chemical fertilizers was applied in wheat, but no fertilizers at all were used in faba bean and field pea plots. Atter legume harvesting, forty day old broccoli and cauliflower seedlings were transplanted to each of them according to three replications randomized block design. The transplanting was conducted at equal planting density, and common organic production practices were applied in entire production cycle. The legume crops improved soil fertility by increasing total soil N (Nitrogen) and improving P (Phosphorus) and K (Potassium) availability to the subsequent crops. As a result, an enhanced vegetative growth, improved curd setting and increased average curd weight was found in broccoli and cauliflower. However, there were significant differences between legume crops themselves regarding the proved benefits to the subsequent crops, confirming a clear advantage of faba bean versus field pea. A significantly higher above ground biomass was recorded in cauliflower plants followed faba bean, compared with field pea and wheat, but no difference was found regarding the biomass production in broccoli. The higher percentage of plants set curds (either broccoli or cauliflower) was obtained in the variants followed faba bean and then field pea. The same was true regarding total curd yield and the average curd weight for both: broccoli and cauliflower.展开更多
Leaf nitrogen(N) and phosphorus(P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P ...Leaf nitrogen(N) and phosphorus(P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples(i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N^P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature(MAT) and mean annual precipitation(MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g–1, 0.27 to 2.17 mg g–1, and 10.20 to 35.40, respectively. Approximately 1/3–1/2 of the families(22–35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N^P scaling exponents did not converge to a certain empirical value, with a range of 0.307–0.991 for 54 out of 62 families which indicated a significant N^P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.展开更多
Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological...Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological and nodular traits. In experiment one, 13 cultivated soybean varieties were grown in a field with relatively low soil P and N availability. P application with 160 kg P/hm2 as triple superphosphate produced a significant simultaneous increase in the content of both P and N in shoot, demonstrating positive P and N interactions. The addition of P also increased root dry weight, root nodule number, nodule mass, nodule size, and nodulation index, but decreased root length and root surface area, indicating that P may affect N nutrition in soybean through a number of root morphological and nodular traits. Interestingly, like P content, N content appeared to be more correlated with root morphological traits (root weight, root length, and root surface area) than with root nodular traits (nodule number, nodule size, nodule mass, and nodulation index) at both P levels, implying that N taken up by the roots may contribute more to the plant N status than biological N2 fixation under the present experimental conditions. In experiment two, 57 soybean lines of a recombinant inbred line (RIL) population derived from a cross between a cultivated variety and a wild genotype were grown on another field site with moderately sufficient P and N levels to further characterize the genetic attributes of root morphological and nodular traits and their relationships with P and N interactions. The results indicated that all morphological and nodular traits measured continually segregated in the RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Genetic analysis revealed that all these root traits had relatively low heritabilities (h2b=74.12,70.65,73.76,56.34,52.59, and 52.24 for root weight, root length, root surface area, nodule number, nodule mass, and nodule size, respectively), suggesting that root morphology and nodule formation are influenced greatly by environmental factors. Correlation analysis of the RILs showed that shoot N content was significantly correlated with P content, confirming positive PXN interactions. Similar to experiment one, shoot N content was only significantly correlated with root morphological traits, but not with root nodular traits, again denoting the fact that the N status in soybean could be attributed more to N uptake from the soil than to biological N2 fixation under the present experimental conditions.展开更多
Background:Understanding the response of the plant community to increasing nitrogen(N)and phosphorus(P)inputs is helpful for managing and protecting grassland ecosystems in semiarid areas.However,information about dif...Background:Understanding the response of the plant community to increasing nitrogen(N)and phosphorus(P)inputs is helpful for managing and protecting grassland ecosystems in semiarid areas.However,information about different types of steppe responses to N and P availability in semiarid grasslands is limited.In 2017-2018,two field experiments were conducted with six levels of N(from 5 to 30 g N m^(−2)yr^(−1))and P(from 2.5 g to 15 g P m^(−2)yr^(−1))additions in three different temperate steppes,including meadow steppe(MS),typical steppe(TS),and desert steppe(DS),in northern China to study the effects of these addition rates on community biomass and diversity.Results:Our results showed that plant biomass and diversity in the three steppe types in Inner Mongolia responded differently to elevated N and P inputs.Increasing P promoted aboveground and belowground biomass more than increasing N in the three temperate steppes.Short-term N and P additions reduced plant diversity to some extent,with the most pronounced decreases in MS and DS.It is noteworthy that there were response thresholds for plant diversity and biomass in response to N and P inputs in different steppe types(e.g.,10 g P m^(−2)yr^(−1)).Furthermore,redundancy analysis and stepwise regression analysis revealed that changes in soil properties induced by nutrient addition and climate conditions jointly regulated changes in vegetation biomass and diversity.Conclusions:The plant biomass and diversity of three steppe types in Inner Mongolia respond divergently to elevated N and P inputs.Our results indicate that regional differences in climate and soil substrate conditions may jointly contribute to the divergent responses of plant biomass and diversity to short-term N and P addition.Our analyses provide new insights into managing and protecting grassland ecosystems.Considering that the effects of nutrient addition on plant diversity and productivity may have increasing effects over time,studies on long-term in situ nutrient addition are necessary.展开更多
基金supported by the National Key R&D Program of China (2022YFD2201100)Natural Science Foundation of Heilongjiang Province of China (TD2023C006)the Fundamental Research Funds for the Central Universities (2572022DS13).
文摘Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations.
文摘Field and glasshouse experiments were conducted to study the effect of B. japonicum inoculation and phosphorus supplementation on macronutrient uptake by soybean. The treatments consisted of B. japonicum inoculation (with & without), phosphorus supplementation at the levels of 0, 20, 40 and 80 kg P·ha-1. Both treatments were replicated four times in a split plot design. The macronutrients considered were N, P, K, Ca and Mg. Results showed that inoculation with B. japonicum significantly contribute to the uptake of N, P, K, Ca and Mg in roots, shoots, pods and the whole soybean plant. Likewise, phosphorus supplementation significantly enhanced the uptake of N, P, K, Ca and Mg in roots, shoots, pods and the whole plant. The use of effective strains of rhizobia and P supplementation was an effective way of enhancing the growth of soybean, eventually the uptake of macronutrients in plant organs.
文摘Application of sound waves is one of the novel techniques for the improvement of water treatment process. In this study, various sound waves such as 1) ultrasonic wave, 2) music box, and 3) windbell were irradiated to water and wastewater for removing contaminants such as nitrate, phosphorus and BOD/COD. As a result, a possibility of improvement of water and wastewater treatment process using sound waves with various frequencies was proposed.
文摘Three equal field plots were cultivated with respectively wheat, field pea and faba bean. The common conventional production technology, including the use of chemical fertilizers was applied in wheat, but no fertilizers at all were used in faba bean and field pea plots. Atter legume harvesting, forty day old broccoli and cauliflower seedlings were transplanted to each of them according to three replications randomized block design. The transplanting was conducted at equal planting density, and common organic production practices were applied in entire production cycle. The legume crops improved soil fertility by increasing total soil N (Nitrogen) and improving P (Phosphorus) and K (Potassium) availability to the subsequent crops. As a result, an enhanced vegetative growth, improved curd setting and increased average curd weight was found in broccoli and cauliflower. However, there were significant differences between legume crops themselves regarding the proved benefits to the subsequent crops, confirming a clear advantage of faba bean versus field pea. A significantly higher above ground biomass was recorded in cauliflower plants followed faba bean, compared with field pea and wheat, but no difference was found regarding the biomass production in broccoli. The higher percentage of plants set curds (either broccoli or cauliflower) was obtained in the variants followed faba bean and then field pea. The same was true regarding total curd yield and the average curd weight for both: broccoli and cauliflower.
基金supported by the National Natural Science Foundation of China (31800397)National Key Research and Development Program of China (2017YFC0503900)+2 种基金the TRY initiative on plant traits (http://www.try-db.org)The TRY database is hosted at the Max Planck Institute for Biogeochemistry (Jena, Germany)supported by DIVERSITAS/Future Earth, the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and EU project BACI (640176)
文摘Leaf nitrogen(N) and phosphorus(P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples(i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N^P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature(MAT) and mean annual precipitation(MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g–1, 0.27 to 2.17 mg g–1, and 10.20 to 35.40, respectively. Approximately 1/3–1/2 of the families(22–35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N^P scaling exponents did not converge to a certain empirical value, with a range of 0.307–0.991 for 54 out of 62 families which indicated a significant N^P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.
基金the McKnight Foundation Collaborative Crop Research Program,国家自然科学基金,国家重点基础研究发展计划(973计划)
文摘Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological and nodular traits. In experiment one, 13 cultivated soybean varieties were grown in a field with relatively low soil P and N availability. P application with 160 kg P/hm2 as triple superphosphate produced a significant simultaneous increase in the content of both P and N in shoot, demonstrating positive P and N interactions. The addition of P also increased root dry weight, root nodule number, nodule mass, nodule size, and nodulation index, but decreased root length and root surface area, indicating that P may affect N nutrition in soybean through a number of root morphological and nodular traits. Interestingly, like P content, N content appeared to be more correlated with root morphological traits (root weight, root length, and root surface area) than with root nodular traits (nodule number, nodule size, nodule mass, and nodulation index) at both P levels, implying that N taken up by the roots may contribute more to the plant N status than biological N2 fixation under the present experimental conditions. In experiment two, 57 soybean lines of a recombinant inbred line (RIL) population derived from a cross between a cultivated variety and a wild genotype were grown on another field site with moderately sufficient P and N levels to further characterize the genetic attributes of root morphological and nodular traits and their relationships with P and N interactions. The results indicated that all morphological and nodular traits measured continually segregated in the RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Genetic analysis revealed that all these root traits had relatively low heritabilities (h2b=74.12,70.65,73.76,56.34,52.59, and 52.24 for root weight, root length, root surface area, nodule number, nodule mass, and nodule size, respectively), suggesting that root morphology and nodule formation are influenced greatly by environmental factors. Correlation analysis of the RILs showed that shoot N content was significantly correlated with P content, confirming positive PXN interactions. Similar to experiment one, shoot N content was only significantly correlated with root morphological traits, but not with root nodular traits, again denoting the fact that the N status in soybean could be attributed more to N uptake from the soil than to biological N2 fixation under the present experimental conditions.
基金supported by the National Key Research and Development Program of China(2016YFA0600801).
文摘Background:Understanding the response of the plant community to increasing nitrogen(N)and phosphorus(P)inputs is helpful for managing and protecting grassland ecosystems in semiarid areas.However,information about different types of steppe responses to N and P availability in semiarid grasslands is limited.In 2017-2018,two field experiments were conducted with six levels of N(from 5 to 30 g N m^(−2)yr^(−1))and P(from 2.5 g to 15 g P m^(−2)yr^(−1))additions in three different temperate steppes,including meadow steppe(MS),typical steppe(TS),and desert steppe(DS),in northern China to study the effects of these addition rates on community biomass and diversity.Results:Our results showed that plant biomass and diversity in the three steppe types in Inner Mongolia responded differently to elevated N and P inputs.Increasing P promoted aboveground and belowground biomass more than increasing N in the three temperate steppes.Short-term N and P additions reduced plant diversity to some extent,with the most pronounced decreases in MS and DS.It is noteworthy that there were response thresholds for plant diversity and biomass in response to N and P inputs in different steppe types(e.g.,10 g P m^(−2)yr^(−1)).Furthermore,redundancy analysis and stepwise regression analysis revealed that changes in soil properties induced by nutrient addition and climate conditions jointly regulated changes in vegetation biomass and diversity.Conclusions:The plant biomass and diversity of three steppe types in Inner Mongolia respond divergently to elevated N and P inputs.Our results indicate that regional differences in climate and soil substrate conditions may jointly contribute to the divergent responses of plant biomass and diversity to short-term N and P addition.Our analyses provide new insights into managing and protecting grassland ecosystems.Considering that the effects of nutrient addition on plant diversity and productivity may have increasing effects over time,studies on long-term in situ nutrient addition are necessary.