Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried ou...Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China.Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0,60,and 180 kg N ha^(-1).Dry weights and N contents of rice plants were measured at tillering,initiation,anthesis,and maturity.Grain yields exhibited significant differences (P<0.05)among the cultivars and N application rates.Increasing N rates improved N uptake at anthesis and maturity in all four cultivars(P<0.05).N translocation from vegetative organs to the grains increased with enhanced N rates (P<0.05).N translocation to the grains ranged from 9 to 64 kg N ha^(-1)and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis(r^2=0.78^(**))and N translocation(r^2=0.67^(**)).Thus,cultivars with a high N uptake at anthesis,low residual N in the straw at maturity,and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.展开更多
The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were...The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were grown in severely Mo-deficient acidic soil (Tamm-reagent-extractable Mo 0.112 mg kg^-1) with (+Mo) and without (-Mo) the application of 0.13 mg kg^-1 Mo. The accumulation and use efficiency of plant total N were significantly higher in +Mo than that in -Mo and in eft than that in ineff under Mo deficiency. N use efficiency was remarkably higher in maturity but it was forwarded to jointing stage after Mo supply, thus indicating that Mo supply promoted the N use efficiency besides N uptake and eff was efficient in N uptake and utilization. The overall activity of nitrate reductase (NR, EC 1.6.6.1) was significantly higher in +Mo than in -Mo and ratio of +Mo/-Mo was even to 14.8 at filleting stage for ineff. Activity of glutamine synthetase (GS, EC 6.3.1.2) was significantly lower in +Mo than in -Mo. Concentration of nitrate and glutamate were also significantly lower in +Mo than in -Mo, thus provided evidences for enhancing N use efficiency by Mo supply. Activities of NR and GS were significantly higher and concentrations of nitrate and glutamate were significantly lower in eff than ineff under Mo deficiency, thus indicated eff was more efficient in N reduction and utilization. It is therefore concluded that Mo could promote N accumulation and utilization in winter wheat which was directly related to NR and feedback regulated by GS. Higher Mo status also results in higher accumulation and utilization of plant N in eft.展开更多
Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumul...Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.展开更多
Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilizatio...Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.展开更多
Nitrogen(N) is considered as an important yield and quality-determining factor in soybean production.The objective of the current experiment was to determine the regularity of N accumulation and its simulation among...Nitrogen(N) is considered as an important yield and quality-determining factor in soybean production.The objective of the current experiment was to determine the regularity of N accumulation and its simulation among different varieties.This work was conducted with frame tests(pot without bottom),and three cultivars,HH41,SN14,HN40,and one feed soybean variety MSD was used as materials.The results showed that the regularity of N accumulation in four varieties with the same tendency increased during the whole growth period,which was up to the maximum when the plant was harvested.The longer growth period was,the higher N accumulation of cultivars was,HN40〉SN14〉HH41,N accumulation of MSD was the highest because of the property for feed soybean.Regularity of N accumulation in plants could be accurately described by the Logistic equation.During the growth there was a period when N accumulation in the whole plant occurred at an intense rate.The time of onset and its duration varied with different varieties.The maximum daily N accumulation was on seed filling stage,pod bearing stage,seed filling stage and pod bearing stage in HH41,SN14,HN40 and MSD,respectively.展开更多
Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop produc...Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop production.Here,it was hypothesized that crop straw incorporation might help to reduce nutrient losses and increase maize yields across time and space.A field experiment for testing straw management practices on maize across three slope positions(top,back and bottom slopes)was conducted in Northeast China in 2018 and 2019.In this study,the dry matter accumulation(DMA),N accumulation(NA),N remobilization,postsilking N uptake and grain yield were measured under SI(straw incorporation)and NSI(no straw incorporation)across three slope positions of 100-m-long consecutive black soil slope farmland during the maize(Zea mays L.)growth stages.Compared with NSI,SI significantly increased DMA and NA at the silking and maturity stages.SI typically increased the N remobilization in all slope positions,and significantly increased N remobilization efficiency and contribution of N remobilization to grain on the back and bottom slopes.However,post-silking N uptake was only increased by SI on the top slope.SI generally increased the crop yield in three slope positions.In the SI treatments,the bottom slope was the highest yield position,followed by the top,and then the back slopes,suggesting that the bottom slope position of regularly incorporated straw might have increased the potential for boosting maize yield.Overall,the study demonstrated the outsized potential of straw incorporation to enhance maize NA and then increase the grain yield in black soil slope farmland.展开更多
[Objective] The aim was to study on effects of N fertilizer on yield, N absorption and utilization of different cultivars of super high-yielding summer maize, in order to provide reference for reasonable N fertilizati...[Objective] The aim was to study on effects of N fertilizer on yield, N absorption and utilization of different cultivars of super high-yielding summer maize, in order to provide reference for reasonable N fertilization in accordance with different cultivars. [Method] Field experiment was conducted to study on effects of different N fertilizers on yield, N absorption and use efficiency of Zhengdan 958 and Xundan 20, in order to learn the effect differences at different N fertilizer levels. [Result] After N was applied, yields of the two summer maize increased significantly. Zhengdan 958 achieved the highest in yield and proceeds at 12 051.18 kg/hm2 and 1 722.40 yuan/hm2, respectively in low N level. In contrast, Xundan 20 achieved the highest at 13 166.00 kg/hm2 and 1 343.92 yuan/hm2 in the above two aspects in high N level. Compared with Zhengdan 958, Xundan 20 increased by 9.90%, 5.20% and 12.00% in N levels of 0, 240, and 450 kg/hm2, respectively. When N fertilizers were applied, protein yield of Xundan 20 was significantly higher than that of Zhengdan 958, so that higher N fertilizers contributed higher protein yield for Xundan 20. In high N level, N efficiency, N-fertilizer utilization and partial productivity of Xundan 20 were significantly higher than that of Zhengdan 958. [Conclusion] Lower N-fertilizer was suitable for Zhengdan 958 and Xundan 20 would get a good harvest if more N-fertilizers were applied. The results provided references for reasonable N fertilization.展开更多
The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were...The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages.展开更多
To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year fi...To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain.展开更多
Extreme high-temperature stress(HTS) associated with climate change poses potential threats to wheat grain yield and quality. Wheat grain protein concentration(GPC) is a determinant of wheat quality for human nutritio...Extreme high-temperature stress(HTS) associated with climate change poses potential threats to wheat grain yield and quality. Wheat grain protein concentration(GPC) is a determinant of wheat quality for human nutrition and is often neglected in attempts to assess climate change impacts on wheat production. Crop models are useful tools for quantification of temperature impacts on grain yield and quality.Current crop models either cannot simulate or can simulate only partially the effects of HTS on crop N dynamics and grain N accumulation. There is a paucity of observational data on crop N and grain quality collected under systematic HTS scenarios to develop algorithms for model improvement as well as evaluate crop models. Two-year phytotron experiments were conducted with two wheat cultivars under HTS at anthesis, grain filling, and both stages. HTS significantly reduced total aboveground N and increased the rate of grain N accumulation, while total aboveground N and the rate of grain N accumulation were more sensitive to HTS at anthesis than at grain filling. The observed relationships between total aboveground N, rate of grain N accumulation, and HTS were quantified and incorporated into the WheatGrow model. The new HTS routines improved simulation of the dynamics of total aboveground N, grain N accumulation, and GPC by the model. The improved model provided better estimates of total aboveground N, grain N accumulation, and GPC under HTS(the normalized root mean square error was reduced by 40%, 85%, and 80%, respectively) than the original WheatGrow model. The improvements in the model enhance its applicability to the assessment of climate change effects on wheat grain quality by reducing the uncertainties of simulating N dynamics and grain quality under HTS.展开更多
An oak forest and three wet meadows/fens were reinvestigated after 50 years concerning tree vitality, biomass and productivity, and soil chemistry. Sulphur and nitrogen deposition has changed dramatically during these...An oak forest and three wet meadows/fens were reinvestigated after 50 years concerning tree vitality, biomass and productivity, and soil chemistry. Sulphur and nitrogen deposition has changed dramatically during these years, and the aim was to analyse the differences in both the oak forest and the open field ecosystems. Trees were re-measured and soil profiles were resampled. Important visible changes in the oak forest were stated concerning the vitality of oaks. Aboveground there was a decrease in tree biomass, production and litter fall, but a huge increase in standing dead logs. During the years, the deposition of sulphur had decreased drastically, but nitrogen deposition was still high. Soil acidification in the forest had decreased, reflected in an increased base saturation in the forest, in spite of slightly lowered pH-values. Strongly increased amounts of exchangeable Ca and Mg now appeared in the forest soil, and a substantial transport of calcium and magnesium had obviously taken place from the forest soil to the meadow and fens during the years. However, the most important soil change was the accumulation of organic matter. The increased accumulation of organic matter in turn meant increased amounts of colloid particles and microsites for ion exchange in the soil. This favoured 2-valence base cations, and especially Ca and Mg that increased very much in all the studied ecosystems. Carbon as well as nitrogen had strongly increased in the forest, meadow and fen soils. This was interpreted as a natural result of increased vegetation growth due to high nitrogen deposition, increased global annual temperature and increased carbon dioxide concentration in air. It was concluded that the decreased deposition of sulphur had had a positive effect on soil chemistry, and that the deposition of nitrogen probably had stimulated vegetation growth in general, and contributed to increased amount of organic matter in the soils. However, in this studied oak forest, the decreased vitality and many killed trees were also suspected to be a result of high nitrogen deposition. Obviously increased tree growth was counteracted by decreased stress resistance, and increased appearance of pathogens in the oak trees.展开更多
The objectives of this investigation are to study nitrogen uptake,translocation,accumulation and distribution in mango tree organs using labeled nitrogen(^(15)N)and to understand the mechanism of boron action in incre...The objectives of this investigation are to study nitrogen uptake,translocation,accumulation and distribution in mango tree organs using labeled nitrogen(^(15)N)and to understand the mechanism of boron action in increasing fruit yield in the off-year.A field experiment was conducted using fifteen-year-old mango trees(cv.Zebda)grown at Al Malak Valley Farm,El-Sharkeya Governorate-Egypt.Treatments included the application of(^(15)NH4)2SO4,“in the on-year”,at a rate of 50 g nitrogen/tree through the stem injection technique.While boron was sprayed on the same trees“in the off-year”at the following rates:0.0(control),250 and 500 mg·L^(-1).The authors hypothesize that boron and nitrogen act synergistically to increase mango fruit yield in the off-year.Results indicated that the highest ^(15)N uptake and accumulation in the on and off-years was observed in the upper(young leaves).When boron was applied at 250 mg·L^(-1),in the off-year,the upper(young leaves)recorded the highest ^(15)N uptake and accumulation(%^(15)Ndff=13.93)relative to the other two leaf categories and those of the on-year.In the on-year fruit accumulated higher ^(15)N than leaf or bud.In the off-year,bud exhibited the highest ^(15)N accumulation without boron application,while leaves exhibited the highest ^(15)N with boron application.The highest%^(15)Ndff in all tree organs was observed at 250 mg·L^(-1) boron rate.Boron increased nitrogen uptake,translocation and accumulation in mango tree organs.A synergistic relationship was observed between boron and nitrogen which led to an increase in fruit yield in the off-year.展开更多
Temperature is an important physical factor, which strongly influences biomass and metabolic activity. In this study, the effects of temperature on the anoxic metabolism of nitrite (NO2) to nitrous oxide (N2O) by ...Temperature is an important physical factor, which strongly influences biomass and metabolic activity. In this study, the effects of temperature on the anoxic metabolism of nitrite (NO2) to nitrous oxide (N2O) by polyphosphate accumulating organisms, and the process of the accumulation of N2O (during nitrite reduction), which acts as an electron acceptor, were investigated using 91% :e 4% Candidatus Accumulibacterphosphatis sludge. The results showed that N2O is accumulated when Accumulibacter first utilize nitrite instead of oxygen as the sole electron acceptor during the denitrifying phosphorus removal process. Properties such as nitrite reduction rate, phosphorus uptake rate, N2O reduction rate, and polyhydroxyalkanoate degradation rate were all influenced by temperature variation (over the range from 10 to 30℃ reaching maximum values at 25℃). The reduction rate of N2O by N2O reductase was more sensitive to temperature when N2O was utilized as the sole electron acceptor instead of NO2, and the N2O reduction rates, ranging from 0.48 to 3.53 N2O-N/(hr.g VSS), increased to 1.45 to 8.60 mg N2O-N/(hr·g VSS). The kinetics processes for temperature variation of 10 to 30℃ were (01 = 1.140-1.216 and θ2 = 1.139-1.167). In the range of 10℃ to 30℃, almost all of the anoxic stoichiometry was sensitive to temperature changes. In addition, a rise in N2O reduction activity leading to a decrease in N2O accumulation in long term operations at the optimal temperature (27℃ calculated by the Arrhenius model).展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.30390082 and 3027079)the Science and Technology Committee of Jiangsu Province,China(No.BE2005369).
文摘Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China.Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0,60,and 180 kg N ha^(-1).Dry weights and N contents of rice plants were measured at tillering,initiation,anthesis,and maturity.Grain yields exhibited significant differences (P<0.05)among the cultivars and N application rates.Increasing N rates improved N uptake at anthesis and maturity in all four cultivars(P<0.05).N translocation from vegetative organs to the grains increased with enhanced N rates (P<0.05).N translocation to the grains ranged from 9 to 64 kg N ha^(-1)and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis(r^2=0.78^(**))and N translocation(r^2=0.67^(**)).Thus,cultivars with a high N uptake at anthesis,low residual N in the straw at maturity,and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.
基金Financial supports by the National Natural Science Foun-dation of China (30070431)the Key Technologies R&D Program of China during the 9th Five-Year Plan period(95-Agric-18-04)+1 种基金the Doctoral Fund of Ministry of Edu-cation of China (200805041061)the Earmarked Fund for Modern Agro-Industry Technology Research System, China
文摘The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were grown in severely Mo-deficient acidic soil (Tamm-reagent-extractable Mo 0.112 mg kg^-1) with (+Mo) and without (-Mo) the application of 0.13 mg kg^-1 Mo. The accumulation and use efficiency of plant total N were significantly higher in +Mo than that in -Mo and in eft than that in ineff under Mo deficiency. N use efficiency was remarkably higher in maturity but it was forwarded to jointing stage after Mo supply, thus indicating that Mo supply promoted the N use efficiency besides N uptake and eff was efficient in N uptake and utilization. The overall activity of nitrate reductase (NR, EC 1.6.6.1) was significantly higher in +Mo than in -Mo and ratio of +Mo/-Mo was even to 14.8 at filleting stage for ineff. Activity of glutamine synthetase (GS, EC 6.3.1.2) was significantly lower in +Mo than in -Mo. Concentration of nitrate and glutamate were also significantly lower in +Mo than in -Mo, thus provided evidences for enhancing N use efficiency by Mo supply. Activities of NR and GS were significantly higher and concentrations of nitrate and glutamate were significantly lower in eff than ineff under Mo deficiency, thus indicated eff was more efficient in N reduction and utilization. It is therefore concluded that Mo could promote N accumulation and utilization in winter wheat which was directly related to NR and feedback regulated by GS. Higher Mo status also results in higher accumulation and utilization of plant N in eft.
基金funded by the National High Technol-ogy Research and Development Program of China (863 Program,2006AA10Z221)China Postdoctoral Science Foundation (2005038436)+1 种基金Shanghai Leading Academic Discipline Project (B209)National Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADA7B00 2008BADA7B01)
文摘Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.
基金funded by the National Natural Science Foundation of China (41201284, 41401337)the China Postdoctoral Science Foundation (2013M542406)
文摘Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.
基金Supported by China's National Key Technology R&D Programs (2007BAD88B01-05 2007BAD89B05)
文摘Nitrogen(N) is considered as an important yield and quality-determining factor in soybean production.The objective of the current experiment was to determine the regularity of N accumulation and its simulation among different varieties.This work was conducted with frame tests(pot without bottom),and three cultivars,HH41,SN14,HN40,and one feed soybean variety MSD was used as materials.The results showed that the regularity of N accumulation in four varieties with the same tendency increased during the whole growth period,which was up to the maximum when the plant was harvested.The longer growth period was,the higher N accumulation of cultivars was,HN40〉SN14〉HH41,N accumulation of MSD was the highest because of the property for feed soybean.Regularity of N accumulation in plants could be accurately described by the Logistic equation.During the growth there was a period when N accumulation in the whole plant occurred at an intense rate.The time of onset and its duration varied with different varieties.The maximum daily N accumulation was on seed filling stage,pod bearing stage,seed filling stage and pod bearing stage in HH41,SN14,HN40 and MSD,respectively.
基金Supported by the Special Fund for Agro-scientific Research in Public Interest in China(201503119-06-01)。
文摘Slope farmland is a main type of agricultural land throughout northeast China.Long-term high intensity utilization and unreasonable farming have caused the deterioration of soil resources and a decrease in crop production.Here,it was hypothesized that crop straw incorporation might help to reduce nutrient losses and increase maize yields across time and space.A field experiment for testing straw management practices on maize across three slope positions(top,back and bottom slopes)was conducted in Northeast China in 2018 and 2019.In this study,the dry matter accumulation(DMA),N accumulation(NA),N remobilization,postsilking N uptake and grain yield were measured under SI(straw incorporation)and NSI(no straw incorporation)across three slope positions of 100-m-long consecutive black soil slope farmland during the maize(Zea mays L.)growth stages.Compared with NSI,SI significantly increased DMA and NA at the silking and maturity stages.SI typically increased the N remobilization in all slope positions,and significantly increased N remobilization efficiency and contribution of N remobilization to grain on the back and bottom slopes.However,post-silking N uptake was only increased by SI on the top slope.SI generally increased the crop yield in three slope positions.In the SI treatments,the bottom slope was the highest yield position,followed by the top,and then the back slopes,suggesting that the bottom slope position of regularly incorporated straw might have increased the potential for boosting maize yield.Overall,the study demonstrated the outsized potential of straw incorporation to enhance maize NA and then increase the grain yield in black soil slope farmland.
基金Supported by Cooperation project of International Plant Nutrition Institution(IPNI)(NMBF-HenanAU-2007)Special Fund for Construction of National Modern Maize Industrial Technology System(nycytx-02-17)~~
文摘[Objective] The aim was to study on effects of N fertilizer on yield, N absorption and utilization of different cultivars of super high-yielding summer maize, in order to provide reference for reasonable N fertilization in accordance with different cultivars. [Method] Field experiment was conducted to study on effects of different N fertilizers on yield, N absorption and use efficiency of Zhengdan 958 and Xundan 20, in order to learn the effect differences at different N fertilizer levels. [Result] After N was applied, yields of the two summer maize increased significantly. Zhengdan 958 achieved the highest in yield and proceeds at 12 051.18 kg/hm2 and 1 722.40 yuan/hm2, respectively in low N level. In contrast, Xundan 20 achieved the highest at 13 166.00 kg/hm2 and 1 343.92 yuan/hm2 in the above two aspects in high N level. Compared with Zhengdan 958, Xundan 20 increased by 9.90%, 5.20% and 12.00% in N levels of 0, 240, and 450 kg/hm2, respectively. When N fertilizers were applied, protein yield of Xundan 20 was significantly higher than that of Zhengdan 958, so that higher N fertilizers contributed higher protein yield for Xundan 20. In high N level, N efficiency, N-fertilizer utilization and partial productivity of Xundan 20 were significantly higher than that of Zhengdan 958. [Conclusion] Lower N-fertilizer was suitable for Zhengdan 958 and Xundan 20 would get a good harvest if more N-fertilizers were applied. The results provided references for reasonable N fertilization.
基金Supported by the National Key Basic Research Program (973 Program) of China (No.2007CB109304)the NationalNatural Science Foundation of China (Nos.30771290 and 30671234)
文摘The variation in nitrogen (N) uptake by rice has been widely studied but differences in rice root morphology that may contribute to this variation are not completely understood. Field and greenhouse experiments were carried out to study N accumulation, root dry weights, total root lengths, root surface areas, and root bleeding rates of two rice cultivars, Elio with low N-use efficiency and Nanguang with high N-use efficiency. Low (1 mmol N L^-1) and high (5 mmol N L^-1) N applications were established in the greenhouse experiment, and the N rates were 0, 120, and 240 kg ha^-1 in the field experiments at Jiangning and Jiangpu farms, Nanjing, China. The results showed that the N accumulation, root dry weight, total root length, and root surface area increased with an increase in N application. At the heading stage, N accumulation in the shoots and roots of Nanguang was greater than that of Elio in the field experiments and that of Elio at 5 mmol N L^-1 in the greenhouse experiment. After the heading stage, N accumulation was higher for Nanguang at both 1 and 5 mmol N L^-1 in the greenhouse experiment. The total root length and root surface area were significantly different between the two cultivars. Over the range of the fertilizer application rates, the root lengths of Nanguang at Jiangning Farm were 49%-6170 greater at booting and 26%-39% greater at heading than those of Elio, and at Jiangpu Farm they were 22%-42% and 26%-38% greater, respectively. Nanguang had a greater root bleeding rate than Elio. It was concluded that the N-use efficiency of the two rice cultivars studied depended to a great extent on the root morphological parameters and root physiological characteristics at different growth stages.
基金the National Key Research and Development Program of China(2016YFD0300103,2017YFD0300603)the Innovation Engineering Plan Project of Jilin Province,China(CXGC2017ZY015)。
文摘To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain.
基金supported by the National Key Research and Development Program of China(2019YFA0607404)the Natural Science Foundation of Jiangsu Province(BK20180523)+2 种基金the National Science Fund for Distinguished Young Scholars(31725020)the National Natural Science Foundation of China(31801260,31872848,41961124008,and 32021004)the China Scholarship Council。
文摘Extreme high-temperature stress(HTS) associated with climate change poses potential threats to wheat grain yield and quality. Wheat grain protein concentration(GPC) is a determinant of wheat quality for human nutrition and is often neglected in attempts to assess climate change impacts on wheat production. Crop models are useful tools for quantification of temperature impacts on grain yield and quality.Current crop models either cannot simulate or can simulate only partially the effects of HTS on crop N dynamics and grain N accumulation. There is a paucity of observational data on crop N and grain quality collected under systematic HTS scenarios to develop algorithms for model improvement as well as evaluate crop models. Two-year phytotron experiments were conducted with two wheat cultivars under HTS at anthesis, grain filling, and both stages. HTS significantly reduced total aboveground N and increased the rate of grain N accumulation, while total aboveground N and the rate of grain N accumulation were more sensitive to HTS at anthesis than at grain filling. The observed relationships between total aboveground N, rate of grain N accumulation, and HTS were quantified and incorporated into the WheatGrow model. The new HTS routines improved simulation of the dynamics of total aboveground N, grain N accumulation, and GPC by the model. The improved model provided better estimates of total aboveground N, grain N accumulation, and GPC under HTS(the normalized root mean square error was reduced by 40%, 85%, and 80%, respectively) than the original WheatGrow model. The improvements in the model enhance its applicability to the assessment of climate change effects on wheat grain quality by reducing the uncertainties of simulating N dynamics and grain quality under HTS.
文摘An oak forest and three wet meadows/fens were reinvestigated after 50 years concerning tree vitality, biomass and productivity, and soil chemistry. Sulphur and nitrogen deposition has changed dramatically during these years, and the aim was to analyse the differences in both the oak forest and the open field ecosystems. Trees were re-measured and soil profiles were resampled. Important visible changes in the oak forest were stated concerning the vitality of oaks. Aboveground there was a decrease in tree biomass, production and litter fall, but a huge increase in standing dead logs. During the years, the deposition of sulphur had decreased drastically, but nitrogen deposition was still high. Soil acidification in the forest had decreased, reflected in an increased base saturation in the forest, in spite of slightly lowered pH-values. Strongly increased amounts of exchangeable Ca and Mg now appeared in the forest soil, and a substantial transport of calcium and magnesium had obviously taken place from the forest soil to the meadow and fens during the years. However, the most important soil change was the accumulation of organic matter. The increased accumulation of organic matter in turn meant increased amounts of colloid particles and microsites for ion exchange in the soil. This favoured 2-valence base cations, and especially Ca and Mg that increased very much in all the studied ecosystems. Carbon as well as nitrogen had strongly increased in the forest, meadow and fen soils. This was interpreted as a natural result of increased vegetation growth due to high nitrogen deposition, increased global annual temperature and increased carbon dioxide concentration in air. It was concluded that the decreased deposition of sulphur had had a positive effect on soil chemistry, and that the deposition of nitrogen probably had stimulated vegetation growth in general, and contributed to increased amount of organic matter in the soils. However, in this studied oak forest, the decreased vitality and many killed trees were also suspected to be a result of high nitrogen deposition. Obviously increased tree growth was counteracted by decreased stress resistance, and increased appearance of pathogens in the oak trees.
文摘The objectives of this investigation are to study nitrogen uptake,translocation,accumulation and distribution in mango tree organs using labeled nitrogen(^(15)N)and to understand the mechanism of boron action in increasing fruit yield in the off-year.A field experiment was conducted using fifteen-year-old mango trees(cv.Zebda)grown at Al Malak Valley Farm,El-Sharkeya Governorate-Egypt.Treatments included the application of(^(15)NH4)2SO4,“in the on-year”,at a rate of 50 g nitrogen/tree through the stem injection technique.While boron was sprayed on the same trees“in the off-year”at the following rates:0.0(control),250 and 500 mg·L^(-1).The authors hypothesize that boron and nitrogen act synergistically to increase mango fruit yield in the off-year.Results indicated that the highest ^(15)N uptake and accumulation in the on and off-years was observed in the upper(young leaves).When boron was applied at 250 mg·L^(-1),in the off-year,the upper(young leaves)recorded the highest ^(15)N uptake and accumulation(%^(15)Ndff=13.93)relative to the other two leaf categories and those of the on-year.In the on-year fruit accumulated higher ^(15)N than leaf or bud.In the off-year,bud exhibited the highest ^(15)N accumulation without boron application,while leaves exhibited the highest ^(15)N with boron application.The highest%^(15)Ndff in all tree organs was observed at 250 mg·L^(-1) boron rate.Boron increased nitrogen uptake,translocation and accumulation in mango tree organs.A synergistic relationship was observed between boron and nitrogen which led to an increase in fruit yield in the off-year.
基金supported by the National High Technology Research and Development Program (863) of China (No. 2012AA063406)the National Natural Science Foundation of China (No. 51008005)
文摘Temperature is an important physical factor, which strongly influences biomass and metabolic activity. In this study, the effects of temperature on the anoxic metabolism of nitrite (NO2) to nitrous oxide (N2O) by polyphosphate accumulating organisms, and the process of the accumulation of N2O (during nitrite reduction), which acts as an electron acceptor, were investigated using 91% :e 4% Candidatus Accumulibacterphosphatis sludge. The results showed that N2O is accumulated when Accumulibacter first utilize nitrite instead of oxygen as the sole electron acceptor during the denitrifying phosphorus removal process. Properties such as nitrite reduction rate, phosphorus uptake rate, N2O reduction rate, and polyhydroxyalkanoate degradation rate were all influenced by temperature variation (over the range from 10 to 30℃ reaching maximum values at 25℃). The reduction rate of N2O by N2O reductase was more sensitive to temperature when N2O was utilized as the sole electron acceptor instead of NO2, and the N2O reduction rates, ranging from 0.48 to 3.53 N2O-N/(hr.g VSS), increased to 1.45 to 8.60 mg N2O-N/(hr·g VSS). The kinetics processes for temperature variation of 10 to 30℃ were (01 = 1.140-1.216 and θ2 = 1.139-1.167). In the range of 10℃ to 30℃, almost all of the anoxic stoichiometry was sensitive to temperature changes. In addition, a rise in N2O reduction activity leading to a decrease in N2O accumulation in long term operations at the optimal temperature (27℃ calculated by the Arrhenius model).