A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, t...A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, the major and minor reaction channels involve C-C and C-H bond activations, respectively, whereas Ni atom prefers the attacking of C-H bond over the C-C bond in CnH2n (n = 5=7). The results are in good agreement with the experimental study. In all cases, intermediates and transition states along the reaction paths of interest are characterized, It is found that both the C-H and C-C bond activation processes are proposed to proceed in a one-step manner via one transition state. The overall C-H and C-C bond activation processes are exothermic and involve low energy barriers, thus transition metal atom Ni is a good mediator for the activity of cycloalkanes CnH2n (n = 3 -7).展开更多
To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, includin...To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae (Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae (Ascophyllum nodosum and Fucus vesiculosus), and one green alga (Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were ana-lyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.展开更多
Objective: To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus(H5N1).Methods: Crude extracts of Andrographis paniculata, Curcu...Objective: To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus(H5N1).Methods: Crude extracts of Andrographis paniculata, Curcuma longa(C. longa),Gynostemma pentaphyllum, Kaempferia parviflora(K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin–Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection.Results: The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants,C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-a and IFN-b m RNA expressions, suggesting their roles in the inhibition of H5N1 virus replication.Conclusions: To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.展开更多
In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mu...In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.展开更多
Solvothermal reactions of 4,4'-oxybis(benzoic acid) (H2oba) with 1,3-dipyridyl benzene (1,3-dpb) produced a two-dimensional (2D) cadmium(Ⅱ) coordination polymer {[Cd(oba)(dpb)]·H2O}n (1). The co...Solvothermal reactions of 4,4'-oxybis(benzoic acid) (H2oba) with 1,3-dipyridyl benzene (1,3-dpb) produced a two-dimensional (2D) cadmium(Ⅱ) coordination polymer {[Cd(oba)(dpb)]·H2O}n (1). The complex was characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group C2/c with a = 13.6692(9), b = 25.9647(17), c = 8.7912(6) , α = 125.0370(10), γ = 2544.7(3)°, V = 2544.7(3) 3, C30H22N2O6Cd, Mr = 618.91, Dc =1.609 g/cm3, F(000) = 1248, μ = 0.904 mm-1 and Z = 4. The neighboring Cd(Ⅱ) ions are linked by oba2-anions and 1,3-dpb to form an infinitely 2D wavelike sheet, and two such 2D sheets are interlocked with each other by H-bonding to form a 2D → 2D structure. The adjacent two groups of interlocked structures are further linked to form a bilayer 2D supramolecular network by π-π interactions. In addition, the fluorescence property of 1 was also studied.展开更多
The stable configurations and hydrogen bond nature of (H2O)n clusters (n = 3-6) have been investigated by the B3LYP method at the 6-31++g^** level. Upon calculation, four conclusions have been drawn: (1) In...The stable configurations and hydrogen bond nature of (H2O)n clusters (n = 3-6) have been investigated by the B3LYP method at the 6-31++g^** level. Upon calculation, four conclusions have been drawn: (1) In the (H2O)3-5 clusters, cyclic configurations were confirmed to be the most stable. But in the (H2O)3-4 ones, only cyclic configurations could be observed. From n = 5 ((H2O)5 clusters), three-dimensional configuration could be found: (2) In the (H2O)6 clusters, all configurations are inclined to be three-dimensional except the most stable configuration which is cyclic; (3) The stable order of (H2O)6 clusters indicates that it is the arrangement of hydrogen bond that plays a decisive role in the cluster stabilities, the zero-point energy is also important, and cluster stabilities are independent on the number of hydrogen bonds; (4) There exist strong cooperativity and superadditivity in the (H2O)n clusters.展开更多
Background: One of potentially dangerous problems for a human organism is the new strain of a virus of bird flu-A/H7N9. As it is regular mutation of bird flu virus, it obvious, that of antibacterial preparations is no...Background: One of potentially dangerous problems for a human organism is the new strain of a virus of bird flu-A/H7N9. As it is regular mutation of bird flu virus, it obvious, that of antibacterial preparations is not efficient. Efficiency decreases when the number of agents with multiple stability to antimicrobic remedy vastly increases, the part of associate infections enlarges, and aggression of opportunistic pathogenic flora rises. This reduces the role of the preparations in prevention of epidemics. Therefore, the optimization of only etiotropic therapies does not fully solve the problem. In this connection natural preparations seem extremely promising which strengthen the functional condition of immune system and, thereby, activate protective forces of macroorganism. Objectives: One of such preparations is BAE Synergy Liquid, a natural mineral water which was underwent subtle energetic changes at the natural energetic deposit. Design: An estimation of protective efficiency of naturally modified mineral BAE SL water was performed on white outbred mice-males in models of H7N9 virus. The animals were monitored during 16 days after infection, and survived and fallen mice were counted daily. Results: The results revealed significant effect of the investigated preparation as possible prophylactic care and medical remedy to the mentioned virus. This means that one can be considered as potential effective remedy for human. Conclusions: As significant effect of the immune system resistance was revealed, the experimental model with studied naturally modified mineral water is potentially generalizable.展开更多
Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between ...Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between logarithm of free radical scavenging rate constants (1gks) and E-HOMO substantially arises from the correlation between E-HOMO and O-H bond dissociation energies (BDE) of antioxidants. Furthermore, E-HOMO were poorly correlated with the logarithm of relative free radical scavenging rate constants (1gk(3)/k(1)) for various types of antioxidants that possess complex structures (r = 0.5602). So in a broad sense, E-HOMO was not an appropriate parameter to characterize the free radical scavenging activity of antioxidants.展开更多
Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneo...Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.展开更多
Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly ...Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.展开更多
基金Supported by the National Natural Science Foundation of China(No.20773014 and 20933001)the Research Foundation of Education Bureau of Hebei Province(No.Z2011115)+3 种基金the 111 Project of China(No.B07012)the Natural Science Foundation of Hebei Province(No.B2012105002)the Research Foundation of Tangshan Administration of Science&Technology(121302011a)the Research Foundation of Tangshan normal college(2013A04)for their support of this work
文摘A theoretical investigation of the reaction mechanisms for C-H and C-C bond activation processes in the reaction of Ni with cycloalkanes C,,H2. (n = 3-7) is carried out. For the Ni + CnH2, (n = 3, 4) reactions, the major and minor reaction channels involve C-C and C-H bond activations, respectively, whereas Ni atom prefers the attacking of C-H bond over the C-C bond in CnH2n (n = 5=7). The results are in good agreement with the experimental study. In all cases, intermediates and transition states along the reaction paths of interest are characterized, It is found that both the C-H and C-C bond activation processes are proposed to proceed in a one-step manner via one transition state. The overall C-H and C-C bond activation processes are exothermic and involve low energy barriers, thus transition metal atom Ni is a good mediator for the activity of cycloalkanes CnH2n (n = 3 -7).
基金supported in part by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0944)Special Fund for Marine Scientific Research in the Public Interest (201005024)the Natural Science Foundation of China (31070724), and China Scholarship Council, the Ministry of Education and National Research Council Canada-Institute for Marine Biosciences and Institute for Nutrisciences and Health
文摘To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae (Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae (Ascophyllum nodosum and Fucus vesiculosus), and one green alga (Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were ana-lyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.
基金supported by the Young Researcher Award of Chiang Mai University grant number R000009357the CMU Mid-Career Research Fellowship Program,Chiang Mai University,Chiang Mai,Thailand
文摘Objective: To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus(H5N1).Methods: Crude extracts of Andrographis paniculata, Curcuma longa(C. longa),Gynostemma pentaphyllum, Kaempferia parviflora(K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin–Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection.Results: The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants,C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-a and IFN-b m RNA expressions, suggesting their roles in the inhibition of H5N1 virus replication.Conclusions: To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
文摘In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems.
基金supported by the National Natural Science Foundation of China (21071004, 51173002)the Start-up Foundation and the young teacher’s research foundation of Anhui University of Science and Technology (11227, 2012QNZ08)the Research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE 201107)
文摘Solvothermal reactions of 4,4'-oxybis(benzoic acid) (H2oba) with 1,3-dipyridyl benzene (1,3-dpb) produced a two-dimensional (2D) cadmium(Ⅱ) coordination polymer {[Cd(oba)(dpb)]·H2O}n (1). The complex was characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group C2/c with a = 13.6692(9), b = 25.9647(17), c = 8.7912(6) , α = 125.0370(10), γ = 2544.7(3)°, V = 2544.7(3) 3, C30H22N2O6Cd, Mr = 618.91, Dc =1.609 g/cm3, F(000) = 1248, μ = 0.904 mm-1 and Z = 4. The neighboring Cd(Ⅱ) ions are linked by oba2-anions and 1,3-dpb to form an infinitely 2D wavelike sheet, and two such 2D sheets are interlocked with each other by H-bonding to form a 2D → 2D structure. The adjacent two groups of interlocked structures are further linked to form a bilayer 2D supramolecular network by π-π interactions. In addition, the fluorescence property of 1 was also studied.
基金Project supported by the Natural Science Foundation of Tangshan Teacher’s College (No. 04C06)
文摘The stable configurations and hydrogen bond nature of (H2O)n clusters (n = 3-6) have been investigated by the B3LYP method at the 6-31++g^** level. Upon calculation, four conclusions have been drawn: (1) In the (H2O)3-5 clusters, cyclic configurations were confirmed to be the most stable. But in the (H2O)3-4 ones, only cyclic configurations could be observed. From n = 5 ((H2O)5 clusters), three-dimensional configuration could be found: (2) In the (H2O)6 clusters, all configurations are inclined to be three-dimensional except the most stable configuration which is cyclic; (3) The stable order of (H2O)6 clusters indicates that it is the arrangement of hydrogen bond that plays a decisive role in the cluster stabilities, the zero-point energy is also important, and cluster stabilities are independent on the number of hydrogen bonds; (4) There exist strong cooperativity and superadditivity in the (H2O)n clusters.
文摘Background: One of potentially dangerous problems for a human organism is the new strain of a virus of bird flu-A/H7N9. As it is regular mutation of bird flu virus, it obvious, that of antibacterial preparations is not efficient. Efficiency decreases when the number of agents with multiple stability to antimicrobic remedy vastly increases, the part of associate infections enlarges, and aggression of opportunistic pathogenic flora rises. This reduces the role of the preparations in prevention of epidemics. Therefore, the optimization of only etiotropic therapies does not fully solve the problem. In this connection natural preparations seem extremely promising which strengthen the functional condition of immune system and, thereby, activate protective forces of macroorganism. Objectives: One of such preparations is BAE Synergy Liquid, a natural mineral water which was underwent subtle energetic changes at the natural energetic deposit. Design: An estimation of protective efficiency of naturally modified mineral BAE SL water was performed on white outbred mice-males in models of H7N9 virus. The animals were monitored during 16 days after infection, and survived and fallen mice were counted daily. Results: The results revealed significant effect of the investigated preparation as possible prophylactic care and medical remedy to the mentioned virus. This means that one can be considered as potential effective remedy for human. Conclusions: As significant effect of the immune system resistance was revealed, the experimental model with studied naturally modified mineral water is potentially generalizable.
文摘Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between logarithm of free radical scavenging rate constants (1gks) and E-HOMO substantially arises from the correlation between E-HOMO and O-H bond dissociation energies (BDE) of antioxidants. Furthermore, E-HOMO were poorly correlated with the logarithm of relative free radical scavenging rate constants (1gk(3)/k(1)) for various types of antioxidants that possess complex structures (r = 0.5602). So in a broad sense, E-HOMO was not an appropriate parameter to characterize the free radical scavenging activity of antioxidants.
基金supported by the National Natural Science Foundation of China(21002006,20452002)Special Program for Key Basic Research of the Ministry of Science and Technology,China(2004-973-36)~~
基金supported by the National Natural Science Foundation of China (21002006,20452002)Special Program for Key Basic Research of the Ministry of Science and Technology,China (2004-973-36)~~
基金supported by the National Natural Science Foundation of China(21002006,20452002)Special Program for Key Basic Research of the Ministry of Science and Technology,China(2004-973-36)~~
基金supported by the National Natural Science Foundation of China(21002006,20452002)Special Program for Key Basic Research of the Ministry of Science and Technology,China(2004-973-36)~~
基金supported by National Natural Science Foundation of China(21606222,21776270)Postdoctoral Science Foundation(2017M621170,2016M601350)~~
文摘Single-atom catalysis,the catalysis by single-atom catalysts(SACs),has attracted considerable attention in recent years as a new frontier in the heterogeneous catalysis field.SACs have the advantages of both homogeneous catalysts(isolated active sites)and heterogeneous catalysts(stable and easy to separate),and are thus predicted to be able to bridge the homo-and heterogeneous catalysis.This prediction was first experimentally demonstrated in 2016.In this mini-review,we summarize the few homogeneous catalysis progresses reported recently where SACs have exhibited promising application:a)Rh/ZnO and Rh/CoO SAC have been used successfully in hydroformylation of olefin of which the activity are comparable to the homogeneous Wilkinson’s catalyst;b)a Pt/Al2O3 SAC has shown excellent performance in hydrosilylation reaction;and c)M-N-C SACs(M=Fe,Co etc.)have been applied in the activation of C–H bonds.All of these examples suggest that fabrication of suitable SACs could provide a new avenue for the heterogenization of homogeneous catalysts.These pioneering works shed new light on the recognition of single-atom catalysis in bridging the homo-and heterogeneous catalysis.
文摘Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.