The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Const...The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Constructing a robust artificial solid electrolyte interphase(SEI)and regulating the lithium deposition behavior is an effective strategy to address these issues.Herein,a three-dimensional(3D)lithium anode with gradient Li_(3)N has been in-situ fabricated on carbon-based framework by thermal diffusion method(denoted as CC/Li/Li_(3)N).Density functional theory(DFT)calculations reveal that Li_(3)N can effectively promote the transport of Li^(+)due to the low energy barrier of Li^(+)diffusion.As expected,the Li_(3)N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions,but also facilitate fast Li^(+)transport across the SEI layer.The anode matrix with uniformly distributed Li3N can enable homogenous deposition of Li,thus preventing Li dendrite propagation.Benefiting from these merits,the CC/Li/Li_(3)N anode achieves ultralong-term cycling for>1000 h at a current density of 2 m A cm^(-2)and dendrite-free Li deposition at an ultrahigh rate of 20 m A cm^(-2).Moreover,the full cells coupled with LiFePO4cathodes show extraordinary cycling stability for>300 cycles in liquidelectrolyte-based batteries and display a high-capacity retention of 96.7%after 100 cycles in solid-state cells,demonstrating the promising prospects for the practical applications of LMBs.展开更多
The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing mo...The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.展开更多
The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinica...The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinical potential for the treatment of related diseases. In the present work, three-dimensional quantitative structure-activity relationship(3D-QSAR) studies were performed on a series of 3-substituted N-benzhydryl-nortropane analogs as NOP agonists using comparative molecular field analysis(Co MFA) and comparative molecular similarity indices analysis(CoM SIA) techniques. The statistically significant models were obtained with 54 compounds in training set by ligand-based atom-by-atom matching alignment. The CoM FA model gave cross-validated coefficient(q2) value of 0.530 using 6 components, non-cross-validated(r2) value of 0.921 with estimated F value of 93.668, and standard error of estimate(SEE) of 0.185. The best Co MSIA model resulted in q2 = 0.592, r2 = 0.945, N = 10, SEE = 0.162, and F = 75.654, based on steric, electrostatic, hydrophobic and hydrogen bond acceptor fields. The predictive ability of the Co MFA and CoM SIA models was further validated using a test set of 18 molecules that were not included in the training set, which resulted in predictive correlation coefficients(r2pred) of 0.551 and 0.637, respectively. Moreover, the CoM FA and CoM SIA contour maps identified the features important for exhibiting potent binding affinities on NOP, and can thus serve as a useful guide for the design of potential NOP agonists.展开更多
基金supported by the National Natural Science Foundation of China(22078251)the National Key R&D Program of China(2021YFB2012000)+1 种基金the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University(JDGD-202211)the Graduate Innovation Fund of Wuhan Institute of Technology(CX2021014)。
文摘The uncontrolled dendrite growth of lithium metal anodes(LMAs)caused by unstable anode/electrolyte interface and uneven lithium deposition have impeded the practical applications of lithium metal batteries(LMBs).Constructing a robust artificial solid electrolyte interphase(SEI)and regulating the lithium deposition behavior is an effective strategy to address these issues.Herein,a three-dimensional(3D)lithium anode with gradient Li_(3)N has been in-situ fabricated on carbon-based framework by thermal diffusion method(denoted as CC/Li/Li_(3)N).Density functional theory(DFT)calculations reveal that Li_(3)N can effectively promote the transport of Li^(+)due to the low energy barrier of Li^(+)diffusion.As expected,the Li_(3)N-rich conformal artificial SEI film can not only effectively stabilize the interface and avoid parasitic reactions,but also facilitate fast Li^(+)transport across the SEI layer.The anode matrix with uniformly distributed Li3N can enable homogenous deposition of Li,thus preventing Li dendrite propagation.Benefiting from these merits,the CC/Li/Li_(3)N anode achieves ultralong-term cycling for>1000 h at a current density of 2 m A cm^(-2)and dendrite-free Li deposition at an ultrahigh rate of 20 m A cm^(-2).Moreover,the full cells coupled with LiFePO4cathodes show extraordinary cycling stability for>300 cycles in liquidelectrolyte-based batteries and display a high-capacity retention of 96.7%after 100 cycles in solid-state cells,demonstrating the promising prospects for the practical applications of LMBs.
文摘The numerical control (NC) precision bending process of thin-walled tube is on e of advanced plastic forming processes with high efficiency, forming precision, strength/weight ratio and low cost, thus it is playing more and more important role in manufacturing parts in aerospace and automobile industries. However, the determination of parameters crucial to make sure tube parts qualified is heavil y experience-based and involves repeated trial-and-errors in practice, which makes the production efficiency reduce drastically and does not fulfill the deve lopment of high technology. With quick development of computer technology and gr adual perfect of plastic forming theory, computer numerical simulation based on finite element method (FEM) has become one of important tools of researching and developing plastic forming technology. Development trend of NC precision bendin g process of tube is simulating its forming process by FEM. Because NC tube bend ing is of 3D nature, it is of great importance to analyze the forming mechanism and find out the influence law of forming parameters on forming process in the N C precision bending process of thin-walled tube quantitatively by 3D FE simulat ion. Based on the rigid-plastic finite element method (FEM) principle, a 3-dimens ional (3D) rigid-plastic FE simulation system named TBS -3D (tube bending simu lation by 3D FEM) for the NC bending process of thin-walled tube has been devel oped, a reasonable FEM model has been established. By use of this FEM simulation system, a NC bending process of thin-walled has been simulated. And deformed m eshes under different bending stages, stress distribution along bending directio n, relationship between maximal wall thickness changing ratio and bending angle have been obtained. And then some forming laws of NC tube bending obtained are a s follows: (1) NC bending process make tube elongate to some extent; (2) Charact eristic of stress distribution is that the outer area is undergoing tensile stre ss, the inner area is undergoing compression stress, and stress neutral layer mo ves close to the inner area, which is in good accordance with the practice; (3) Maximal wall thinning ratio in the outer tensile area changes only a little with increase of bending angle, and maximal wall thickening ratio in the inner compr ession area increases linearly with bending angle. The above results show that 3 D FE simulation is an important and valid tool of analyzing NC bending process o f tube, this research is beneficial for the practical tube bending process, and it may serve as a significant guide to the practice of the relevant processes.
基金supported by the National Natural Science Foundation of China(No.81101687)
文摘The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinical potential for the treatment of related diseases. In the present work, three-dimensional quantitative structure-activity relationship(3D-QSAR) studies were performed on a series of 3-substituted N-benzhydryl-nortropane analogs as NOP agonists using comparative molecular field analysis(Co MFA) and comparative molecular similarity indices analysis(CoM SIA) techniques. The statistically significant models were obtained with 54 compounds in training set by ligand-based atom-by-atom matching alignment. The CoM FA model gave cross-validated coefficient(q2) value of 0.530 using 6 components, non-cross-validated(r2) value of 0.921 with estimated F value of 93.668, and standard error of estimate(SEE) of 0.185. The best Co MSIA model resulted in q2 = 0.592, r2 = 0.945, N = 10, SEE = 0.162, and F = 75.654, based on steric, electrostatic, hydrophobic and hydrogen bond acceptor fields. The predictive ability of the Co MFA and CoM SIA models was further validated using a test set of 18 molecules that were not included in the training set, which resulted in predictive correlation coefficients(r2pred) of 0.551 and 0.637, respectively. Moreover, the CoM FA and CoM SIA contour maps identified the features important for exhibiting potent binding affinities on NOP, and can thus serve as a useful guide for the design of potential NOP agonists.