Extreme weather events,such as floods and droughts,are expected to rise significantly worldwide as a result of climate change.Investigating future drought patterns is therefore a key approach for elaborating anticipat...Extreme weather events,such as floods and droughts,are expected to rise significantly worldwide as a result of climate change.Investigating future drought patterns is therefore a key approach for elaborating anticipatory water resources management responses to climate change.In this paper,future meteorological drought conditions are investigated based on the SPEI(Standardised Precipitation Evapotranspiration Index).This study makes use of observed and projected data.The simulated data were retrieved from the CMIP6(Coupled Model Intercomparison Project Phase 6)over the period 2025-2050,and the Delta change method was adopted to remove the bias in the dataset.Then SPEI at various scales has been estimated under four future scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5).The trend analysis of the projected SPEI was performed at p<0.05 using the MMK(Modified Mann-Kendall)test in order to detect the statistically significant trend of the drought against the null hypothesis of no trend.Results show large variability in the magnitude of drought in the past and future.Based on SPEI at 24 months accumulation,the result shows that under SSP1-2.6,the basin will experience a wet period during the first decade(SPEI=0.60),the second decade will be dry(SPEI24=-0.43).The remaining years will be also dry(SPEI=-0.34).Under SSP2-4.5,SSP3-7.0 and SSP5-8.5 scenarios,the district will experience a wet period during the first two decades with SPEI ranging from 0.38 to 0.59.This wet period will be followed by a dry period under these scenarios ranging from-0.14 to-0.06.Overall,under SSPs scenarios,two main periods characterized by a rainfall recovery spanning from followed by a moderately prolonged drought are identified within the study area.The findings of this study may provide valuable information for developing proactive measures to reduce water insecurity in Fada N’Gourma through effective drought mitigation.展开更多
BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complicat...BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications.However,the function of m6A methyltransferase Wilms tumor 1-associated protein(WTAP)in diabetic wound healing remains elusive.AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing.METHODS Human umbilical vein endothelial cells(HUVECs)were induced with high glucose(HG)to establish in vitro cell model.Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes,and full-thickness excision was made to mimic diabetic wound healing.HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1(DNMT1)overexpression vectors.Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays.In vitro angiogenesis was measured using a tube formation experiment.The images of wounds were captured,and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson’s trichrome staining.RESULTS The expression of several m6A methyltransferases,including METTL3,METTL14,METTL16,KIAA1429,WTAP,and RBM15,were measured.WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control.WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG.The unclosed wound area of mice was smaller in WTAP knockdowntreated mice than in control mice at nine days post-wounding,along with enhanced re-epithelialization rate and collagen deposition.The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs.The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs.Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs.CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.展开更多
文摘Extreme weather events,such as floods and droughts,are expected to rise significantly worldwide as a result of climate change.Investigating future drought patterns is therefore a key approach for elaborating anticipatory water resources management responses to climate change.In this paper,future meteorological drought conditions are investigated based on the SPEI(Standardised Precipitation Evapotranspiration Index).This study makes use of observed and projected data.The simulated data were retrieved from the CMIP6(Coupled Model Intercomparison Project Phase 6)over the period 2025-2050,and the Delta change method was adopted to remove the bias in the dataset.Then SPEI at various scales has been estimated under four future scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0 and SSP5-8.5).The trend analysis of the projected SPEI was performed at p<0.05 using the MMK(Modified Mann-Kendall)test in order to detect the statistically significant trend of the drought against the null hypothesis of no trend.Results show large variability in the magnitude of drought in the past and future.Based on SPEI at 24 months accumulation,the result shows that under SSP1-2.6,the basin will experience a wet period during the first decade(SPEI=0.60),the second decade will be dry(SPEI24=-0.43).The remaining years will be also dry(SPEI=-0.34).Under SSP2-4.5,SSP3-7.0 and SSP5-8.5 scenarios,the district will experience a wet period during the first two decades with SPEI ranging from 0.38 to 0.59.This wet period will be followed by a dry period under these scenarios ranging from-0.14 to-0.06.Overall,under SSPs scenarios,two main periods characterized by a rainfall recovery spanning from followed by a moderately prolonged drought are identified within the study area.The findings of this study may provide valuable information for developing proactive measures to reduce water insecurity in Fada N’Gourma through effective drought mitigation.
文摘BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications.However,the function of m6A methyltransferase Wilms tumor 1-associated protein(WTAP)in diabetic wound healing remains elusive.AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing.METHODS Human umbilical vein endothelial cells(HUVECs)were induced with high glucose(HG)to establish in vitro cell model.Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes,and full-thickness excision was made to mimic diabetic wound healing.HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1(DNMT1)overexpression vectors.Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays.In vitro angiogenesis was measured using a tube formation experiment.The images of wounds were captured,and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson’s trichrome staining.RESULTS The expression of several m6A methyltransferases,including METTL3,METTL14,METTL16,KIAA1429,WTAP,and RBM15,were measured.WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control.WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG.The unclosed wound area of mice was smaller in WTAP knockdowntreated mice than in control mice at nine days post-wounding,along with enhanced re-epithelialization rate and collagen deposition.The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs.The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs.Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs.CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.