We present nonadiabatic quantum dynamical calculations on the two coupled potential energy surfaces (12A' and 22A') [J. Theor. Comput. Chem. 8, 849 (2009)] for the reaction. Initial state-resolved reaction proba...We present nonadiabatic quantum dynamical calculations on the two coupled potential energy surfaces (12A' and 22A') [J. Theor. Comput. Chem. 8, 849 (2009)] for the reaction. Initial state-resolved reaction probabilities and cross sections for the N+ND→N2+D reaction and N'+ND→N+N'D reaction for collision energies of 5 meV to 1.0 eV are determined, respectively. It is found that the N+ND→N2+D reaction is dominated in the N+ND reaction. In addition, we obtained the rate constants for the N+ND→N2+D reaction which demand further experimental investigations.展开更多
基金This work was supported by the National Basic Research Program of China (No.2007CB815202) and the National Natural Science Foundation of China (No.20721004 and No.20833008).
文摘We present nonadiabatic quantum dynamical calculations on the two coupled potential energy surfaces (12A' and 22A') [J. Theor. Comput. Chem. 8, 849 (2009)] for the reaction. Initial state-resolved reaction probabilities and cross sections for the N+ND→N2+D reaction and N'+ND→N+N'D reaction for collision energies of 5 meV to 1.0 eV are determined, respectively. It is found that the N+ND→N2+D reaction is dominated in the N+ND reaction. In addition, we obtained the rate constants for the N+ND→N2+D reaction which demand further experimental investigations.