This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)w...This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)with different content(mCu-xNP/AC)were manufactured and applied in the acetylene hydrochlorination reaction.It was found that the doping of carriers N and P induced the transformation of Cu^(2+)to Cu^(+),and the catalytic activity was markedly improved.Under the optimal reaction temperature of 220℃,the gas hourly space velocity(GHSV)of C_(2)H_(2)was 90 h^(-1)and V_(HCl):V_(C_(2)H_(2))was 1.15.The initial activity of the 5%Cu-30 NP/AC catalyst reached 95.59%.Through some characterization methods showed the addition of N and P improved the dispersion of Cu in carbon,which increased the ratio of Cu^+/Cu^(2+).The measurement results confirmed that the chemisorption capacity of mCu-xNP/AC for C_(2)H_(2)decreased slightly,and the chemisorption capacity for HCl increased significantly,which was the reason for the increased activity of the catalyst.The conclusion provides a reference for the development of acetylene hydrochlorination Cu catalyst.展开更多
A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Fiv...A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15 ~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplica tion of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.展开更多
Leaf N and P stoichiometry in terrestrial ecosystems has been widely investigated in recent years owing to the importance of these elements in improving the predicted vegetation responses to global changes.The vertica...Leaf N and P stoichiometry in terrestrial ecosystems has been widely investigated in recent years owing to the importance of these elements in improving the predicted vegetation responses to global changes.The vertical distribution of leaf N and P stoichiometry has attracted increasing attention because of the dramatic changes in environmental factors at regional scales.However,the characteristics of leaf N and P stoichiometry in the southeast Qinghai–Tibet plateau(SET)are not clear,although this area is sensitive to global change.Here,we analyzed the leaf N and P concentrations in dominant plant species on natural altitudinal gradients on the Duoxiongla(DXL),Sejila(SJL),Mila(ML),and Gangbala(GBL)mountains across the SET all the way to central Tibet.Our results showed that the leaf N concentrations were comparable among the regions,whereas the leaf P concentrations dramatically decreased from SET to central Tibet(CT).The leaf N concentrations were 23.6,21.3,20.8,and 22.4 g kg^(-1),and the leaf P concentrations were 2.40,2.49,1.94,and 1.59 g kg^(-1) on the SJL,DXL,ML and GBL mountains,respectively.The leaf N/P ratios on the DXL,SJL,ML,and GBL mountains were 8.81,10.3,11.2,and 14.2,respectively.Considering the increasing trend of the leaf N/P ratio from southeast Qinghai–Tibet plateau to central Tibet,N limitation might widely exist in well vegetated ecosystems in the Qinghai–Tibet plateau.展开更多
It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species...It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species (Solidago canadensis L.) in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments. Three Pb levels (control, 300, and 600 mg/kg soil) were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows. Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species ( Glomus mosseae, Glomus versiform, Glomus diaphanum, Glomus geosporum, and Glomus etunicatum). The ^15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants. The results showed that S. canadensis was highly dependent on mycorrhizae. The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization (root length colonized, RLC%) but did not affect spore numbers, N (including total N and ^15N) and P uptake. The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments. The Pb was mostly sequestered in belowground of plant (root and rhizome). The results suggest that the high efficiency of mycorrhizae on nutrient uptake might give S. canadensis a great advantage over native species in Pb polluted soils.展开更多
Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this stud...Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality.展开更多
Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the ma...Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the management of the sandy grassland ecosystem.We carried out a field experiment with six N levels in the Hulunbuir Sandy Land of China from 2014 to 2016 and explored the Agropyron michnoi Roshev.responses of both aboveground and belowground biomasses and carbon(C),N and phosphorus(P)concentrations in the plant tissues and soil.With increasing N addition,both aboveground and belowground biomasses and C,N and P concentrations in the plant tissues increased and exhibited a single-peak curve.C:N and C:P ratios of the plant tissues first decreased but then increased,while the trend for N:P ratio was opposite.The peak values of aboveground biomass,belowground biomass and C concentration in the plant tissues occurred at the level of 20 g N/(m2•a),while those of N and P concentrations in the plant tissues occurred at the level of 15 g N/(m2•a).The maximum growth percentages of aboveground and belowground biomasses were 324.2%and 75.9%,respectively,and the root to shoot ratio(RSR)decreased with the addition of N.N and P concentrations in the plant tissues were ranked in the order of leaves>roots>stems,while C concentration was ranked as roots>leaves>stems.The increase in N concentration in the plant tissues was the largest(from 34%to 162%),followed by the increase in P(from 10%to 33%)and C(from 8%to 24%)concentrations.The aboveground biomass was positively and linearly correlated with leaf C,N and P,and soil C and N concentrations,while the belowground biomass was positively and linearly correlated with leaf N and soil C concentrations.These results showed that the accumulation of N and P in the leaves caused the increase in the aboveground biomass,while the accumulation of leaf N resulted in the increase in the belowground biomass.N deposition can alter the allocation of C,N and P stoichiometry in the plant tissues and has a high potential for increasing plant biomass,which is conducive to the restoration of sandy grassland.展开更多
Background:The replanting of broadleaved trees in pure coniferous plantations is widely implemented,as mixed plantations are generally more stable and functional.However,the effect of interspecific interactions betwee...Background:The replanting of broadleaved trees in pure coniferous plantations is widely implemented,as mixed plantations are generally more stable and functional.However,the effect of interspecific interactions between broadleaved and coniferous trees on internal nutrient cycles of conifers remains unclear.Methods:We selected pure coniferous plantations of a native(Pinus massoniana)and an exotic(P.elliottii)pine species and their corresponding mixed plantations with broadleaved trees(Schima superba)in subtropical China,and measured the nitrogen(N)and phosphorus(P)contents in the rhizosphere soils,fine roots,twigs,needles and needle litter of pines.We calculated the root capture,needle resorption and translocation of N and P by pines to determine the mobility of nutrients in trees.Results:Although the N and P in the rhizosphere soils increased due to the replanting of broadleaved trees,the N and P contents in the aboveground tissues of the two pine species did not increase in mixed plantations.Mixed planting had a negative effect on the N and P capture of native pine and a positive effect on that of exotic pine.The N and P resorption efficiencies increased in native pine but were unchanged in exotic pine after the replanting of S.superba.Native pine preferentially employed an aboveground nutrient resorption strategy,whereas exotic pine tended to adopt a belowground nutrient capture strategy after replanting.Translocation of N and P in trees was detected,which reflected the trade-offs between root nutrient capture and needle nutrient resorption.Conclusions:The effect of mixed planting varied between the species of native and exotic pines,and the internal nutrient cycles of both pine species might be dominated by interspecific interaction effects on nutrients rather than soil nutrients.Our study highlights the importance of selecting suitable broadleaved species for replanting in coniferous plantations.展开更多
Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg...Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low organic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil C mic . The C mic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between C mic and organic matter content, suggesting that the influence of land use on C mic is mainly related to the input and accumulation of organic matter. Microbial biomass N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg and was also affected by land use. The change of N mic with land use was similar to that of C mic . The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The N mic was significantly correlated with soil total N and available N. Microbial biomass P in the soils ranged from 4.5 mg P/kg to 52.3 mg P/kg. The microbial C/P ratio was in the range of 4-23. The P mic was relatively less affected by land use due to differences in fertilization practices for various land use systems.展开更多
Shaanxi is a leading province in animal husbandry(AH)in China.However,the lack of provincial information on the characteristics and utilization potential of livestock manure(LM)hinders crucial management decisions.The...Shaanxi is a leading province in animal husbandry(AH)in China.However,the lack of provincial information on the characteristics and utilization potential of livestock manure(LM)hinders crucial management decisions.Therefore,we investigated the spatiotemporal distribution,availability and biogas potential of LM in Shaanxi,and examine the carbon emission reduction potential of AH.There has been a 1.26-fold increase in LM quantities in Shaanxi over the past 35 years,reaching 4635.6×10^(4)t by 2021.LM was mainly concentrated in northern Shaanxi and the eastern part of Hanzhong.Cattle and pig manure were the primary sources of LM,with the average LM land-load of 14.57 t·ha^(−1)in 2021.While the overall AH in Shaanxi has not exceeded the environmental capacity,the actual scales of AH in Ankang and Hanzhong have already surpassed the respective environmental capacities,posing a higher risk of N and P pollutions.In 2021,the estimated biogas energy potential of LM was 1.2×10^(11)MJ.From 2012 to 2021,the average carbon emission reduction potential in Shaanxi was 22%,with an average potential scale of 10%.The results of this research provide valuable data and policy recommendations for promoting the intensive use of LM and reducing carbon emissions in Shaanxi.展开更多
Three new ent-kaurene diterpenoids, adenanthins N, 0 and P (1-3), and four known diterpenoids, leucophyllin E (4), glabcensin C (5), adenanthin A (6), leucophyllin B (7), together with a highly unsaturated fatty acid,...Three new ent-kaurene diterpenoids, adenanthins N, 0 and P (1-3), and four known diterpenoids, leucophyllin E (4), glabcensin C (5), adenanthin A (6), leucophyllin B (7), together with a highly unsaturated fatty acid, 9,16-dioxo-10,1 2,14-octadeca-trienoic acid (8), were isolated from Isodon adenanthus (Diels) Kudo. The structure of compound 4 was revised accordingly. Compound I showed significant cytotoxic activity against K562 cells with IC50 = 0.45 mug/mL.展开更多
Intensive farming is a primary cause of increased sediment and associated nitrogen(N)and phosphorus(P)loads in surface water systems.Determining their contributing sources,pathways and loads present major challenges i...Intensive farming is a primary cause of increased sediment and associated nitrogen(N)and phosphorus(P)loads in surface water systems.Determining their contributing sources,pathways and loads present major challenges in the high-intensity agricultural catchments.Herein,we quantify the sediment sources and magnitude of sediment total N and total P from different sources using a novel application of compound-specific stable isotope(CSSI)and fallout radionuclides(FRNs)of^(137)cs and^(210)pbex in an intensive agricultural catchment in North China.Sediment sources from surface and sub-surface soils were estimated from FRNs fingerprint and accounted for 62±7%and 38±7%respectively,while surface soil from land uses that originated from hillslope were identified by CssI fingerprint.Using a novel application of FRNs and CSSI sediment fingerprinting techniques,the dominant sediment source was derived from maize farmland(44±0.1%),followed by channel bank(38±7%).The sedimentation rate(13.55±0.30 t ha^(-1)yr^(-1))was quantifed by the^(137)cs cores(0-60 cm)at the outlet of this catchment.The total N and total P in sediment were both mostly derived from maize farmland and least from channel banks.The channel banks are significant sediment sources but contribute little to the input of sediment N and P for eutrophication.It implies that chemically-applied farmlands are the main hotspots for catchment erosion control and pollution prevention.The novel application of FRNs and CSSI techniques cost-effectively quantified sediment N and P loads from different sources with a single visit to the catchment,enabling rapid assessment for optimizing soil conservation strategies and land management practices.展开更多
Investigating the impact of apple-dominated areas on nitrogen(N)and phosphorus(P)losses at a basin scale was essential for the sustainable development of apple industry in China.This study conducted a survey on fertil...Investigating the impact of apple-dominated areas on nitrogen(N)and phosphorus(P)losses at a basin scale was essential for the sustainable development of apple industry in China.This study conducted a survey on fertilizer application and built a Soil and Water Assessment Tool(SWAT)model to quantita-tively analyze the N and P losses in the Qixia apple-dominated area.Additionally,the decreases in N and P losses through adjusting the fertilizer application modes were evaluated.Results showed that average N and P losses in the Wulong River Basin(WRB)were 44.4 and 0.365 kg ha^(-1)in 2011-2017,respectively,and apple orchards accounted for 733%and 51.4%of the total N and P losses in the basin.Under nine fertilizer scheduling scenarios,three fertilizer schedule scenarios,automatic fertilizer application(S-AUTO),"one shot"mode(S1),and regulated fertilizer application(S-BSD),had the lowest N and P losses in apple orchards.The decreases in N loss ranged from 20.6%to 26.1%at the subbasin scale and 14.8%-30.7%at the basin outlet when applying the S-AUTO,S1,and S-BSD fertilizer application modes in Qixia apple orchards and all apple orchards in the WRB.The reductions in P loss varied from 22.0%to 46.1%at the subbasin scale and 14.6%-25.6%at the basin outlet.In orchard-dominated basin,N and P losses can be effectively reduced by optimizing the orchard fertilizer scheduling strategies.展开更多
Cost-effective electrocatalysts for the hydrogen evolution reaction (HER) play a key role in the field of renewable energy. Although tremendous efforts have been devoted to the search of alternative materials, Pt/C ...Cost-effective electrocatalysts for the hydrogen evolution reaction (HER) play a key role in the field of renewable energy. Although tremendous efforts have been devoted to the search of alternative materials, Pt/C is still the most efficient electrocatalyst for the HER. Nevertheless, decreasing the loading of Pt in the designed eletrocatalysts is of significance. However, with low Pt loading, it is challenging to maintain excellent catalytic performance. Herein, a new catalyst (Pt/NPC) was prepared by dispersing Pt nanoparticles (PtNPs) with an average diameter of 1.8 nm over a three-dimensional (3D) carbon network co-doped with N and P. Because of the high electronegativity of the N and P dopants, PtNPs were uniformly dispersed on the carbon network via high electronic affinity between Pt and carbon, affording a Pt/NPC catalyst; Pt/NPC exhibited superior HER activity, attributed to the down-shift of the Pt d-band caused by the donation of charge from N and P to Pt. The results show that Pt/NPC with an ultralow Pt loading of 1.82 wt.% exhibits excellent HER performance, which corresponds to a HER mass activity 20.6-fold greater than that observed for commercial 20% Pt/C at an overpotential of 20 mV vs. RHE.展开更多
Background:Changes in foliar nitrogen(N)and phosphorus(P)stoichiometry play important roles in predicting the efects of global change on ecosystem structure and function.However,there is substantial debate on the efec...Background:Changes in foliar nitrogen(N)and phosphorus(P)stoichiometry play important roles in predicting the efects of global change on ecosystem structure and function.However,there is substantial debate on the efects of P addition on foliar N and P stoichiometry,particularly under diferent levels of N addition.Thus,we conducted a global meta-analysis to investigate how N addition alters the efects of P addition on foliar N and P stoichiometry across different rates and durations of P addition and plant growth types based on more than 1150 observations.Results:We found that P addition without N addition increased foliar N concentrations,whereas P addition with N addition had no efect.The positive efects of P addition on foliar P concentrations were greater without N addition than with N addition.Additionally,the efects of P addition on foliar N,P and N:P ratios varied with the rate and duration of P addition.In particular,short-term or low-dose P addition with and without N addition increased foliar N concentration,and the positive efects of short-term or low-dose P addition on foliar P concentrations were greater without N addition than with N addition.The responses of foliar N and P stoichiometry of evergreen plants to P addition were greater without N addition than with N addition.Moreover,regardless of N addition,soil P availability was more efective than P resorption efciency in predicting the changes in foliar N and P stoichiometry in response to P addition.Conclusions:Our results highlight that increasing N deposition might alter the response of foliar N and P stoichiometry to P addition and demonstrate the important efect of the experimental environment on the results.These results advance our understanding of the response of plant nutrient use efciency to P addition with increasing N deposition.展开更多
基金supported by the Taishan Scholars Program of Shandong Province(tsqn202103051)the Project of Scientific Research in Shihezi University(CXFZ202205)。
文摘This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)with different content(mCu-xNP/AC)were manufactured and applied in the acetylene hydrochlorination reaction.It was found that the doping of carriers N and P induced the transformation of Cu^(2+)to Cu^(+),and the catalytic activity was markedly improved.Under the optimal reaction temperature of 220℃,the gas hourly space velocity(GHSV)of C_(2)H_(2)was 90 h^(-1)and V_(HCl):V_(C_(2)H_(2))was 1.15.The initial activity of the 5%Cu-30 NP/AC catalyst reached 95.59%.Through some characterization methods showed the addition of N and P improved the dispersion of Cu in carbon,which increased the ratio of Cu^+/Cu^(2+).The measurement results confirmed that the chemisorption capacity of mCu-xNP/AC for C_(2)H_(2)decreased slightly,and the chemisorption capacity for HCl increased significantly,which was the reason for the increased activity of the catalyst.The conclusion provides a reference for the development of acetylene hydrochlorination Cu catalyst.
基金Project (Nos. 39430090 and 33880537) supported by the National Natural Science Foundation of China.
文摘A 12-year field experiment was conducted to investigate the effect of different tillage methods and fertil- ization systems on microbial biomass C, N and P of a gray fluvo-aguic soil in rice-based cropping system. Five fertilization treatments were designed under conventional tillage (CT) or no tillage (NT) system: no fertilizer (CK); chemical fertilizer only (CF); combining chemical fertilizer with pig manure (PM); combining chemical fertilizer with crop straw (CS) and fallow (F). The results showed that biomass C, N and P were enriched in the surface layer of no-tilled soil, whereas they distributed relatively evenly in the tilled soil, which might result from enrichment of crop residue, organic manure and mineral fertilizer, and surficial development of root systems under NT. Under the cultivation system, NT had slightly greater biomass C, N and P at 0~5 cm depth, significantly less biomass C, N and P at 5~15 cm depth, less microbial biomass C, N and equivalent biomass P at 15 ~30 cm depth as compared to CT, indicating that tillage was beneficial for the multiplica tion of organisms in the plowed layer of soil. Under the fallow system, biomass C, N and P in the surface layer were significantly greater for NT than CT while their differences between the two tillage methods were negligible in the deeper layers. In the surface layer, biomass C, N and P in the soils amended with organic manure combined with mineral fertilizers were significantly greater than those of the treatments only with mineral fertilizers and the control. Soils without fertilizer had the least biomass nutrient contents among the five fertilization treatments. Obviously, the long-term application of organic manure could maintain the higher activity of microorganisms in soils. The amounts of biomass C, N and P in the fallowed soils varied with the tillage methods; they were much greater under NT than under CT, especially in the surface layer, suggesting that the frequent plowing could decrease the content of organic matter in the surface layer of the fallowed soil.
基金funded by the Natural Science Foundation of Tibet Autonomous Region Department and Agriculture and Animal Husbandry University(XZ202101ZR0023G)the National Natural Science Foundation of China(42067036)the Forestry Innovation Team Construction project of Xizang Agriculture and Animal Husbandry University(2020-001)。
文摘Leaf N and P stoichiometry in terrestrial ecosystems has been widely investigated in recent years owing to the importance of these elements in improving the predicted vegetation responses to global changes.The vertical distribution of leaf N and P stoichiometry has attracted increasing attention because of the dramatic changes in environmental factors at regional scales.However,the characteristics of leaf N and P stoichiometry in the southeast Qinghai–Tibet plateau(SET)are not clear,although this area is sensitive to global change.Here,we analyzed the leaf N and P concentrations in dominant plant species on natural altitudinal gradients on the Duoxiongla(DXL),Sejila(SJL),Mila(ML),and Gangbala(GBL)mountains across the SET all the way to central Tibet.Our results showed that the leaf N concentrations were comparable among the regions,whereas the leaf P concentrations dramatically decreased from SET to central Tibet(CT).The leaf N concentrations were 23.6,21.3,20.8,and 22.4 g kg^(-1),and the leaf P concentrations were 2.40,2.49,1.94,and 1.59 g kg^(-1) on the SJL,DXL,ML and GBL mountains,respectively.The leaf N/P ratios on the DXL,SJL,ML,and GBL mountains were 8.81,10.3,11.2,and 14.2,respectively.Considering the increasing trend of the leaf N/P ratio from southeast Qinghai–Tibet plateau to central Tibet,N limitation might widely exist in well vegetated ecosystems in the Qinghai–Tibet plateau.
基金This work was supported by the National Basic Research Program(973)of China(No.2006CB 100206)the Zhejiang Provincial Natural Science Foundation of China(No.R505024,Y307418).
文摘It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species (Solidago canadensis L.) in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments. Three Pb levels (control, 300, and 600 mg/kg soil) were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows. Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species ( Glomus mosseae, Glomus versiform, Glomus diaphanum, Glomus geosporum, and Glomus etunicatum). The ^15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants. The results showed that S. canadensis was highly dependent on mycorrhizae. The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization (root length colonized, RLC%) but did not affect spore numbers, N (including total N and ^15N) and P uptake. The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments. The Pb was mostly sequestered in belowground of plant (root and rhizome). The results suggest that the high efficiency of mycorrhizae on nutrient uptake might give S. canadensis a great advantage over native species in Pb polluted soils.
基金support of the Special Fund for Public-Welfare Industrial (Agriculture) Research of China (200903001)the National Natural Science Foundation of China (41171181,41101199)+1 种基金the Key Technology R&D Program of Jiangsu Province, China (BE2010313)the Prospective Project of Production Education Research Cooperation of Jiangsu Province, China (BY2010013)
文摘Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality.
基金the National Natural Science Foundation of China(31560657)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2018MS03079)。
文摘Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the management of the sandy grassland ecosystem.We carried out a field experiment with six N levels in the Hulunbuir Sandy Land of China from 2014 to 2016 and explored the Agropyron michnoi Roshev.responses of both aboveground and belowground biomasses and carbon(C),N and phosphorus(P)concentrations in the plant tissues and soil.With increasing N addition,both aboveground and belowground biomasses and C,N and P concentrations in the plant tissues increased and exhibited a single-peak curve.C:N and C:P ratios of the plant tissues first decreased but then increased,while the trend for N:P ratio was opposite.The peak values of aboveground biomass,belowground biomass and C concentration in the plant tissues occurred at the level of 20 g N/(m2•a),while those of N and P concentrations in the plant tissues occurred at the level of 15 g N/(m2•a).The maximum growth percentages of aboveground and belowground biomasses were 324.2%and 75.9%,respectively,and the root to shoot ratio(RSR)decreased with the addition of N.N and P concentrations in the plant tissues were ranked in the order of leaves>roots>stems,while C concentration was ranked as roots>leaves>stems.The increase in N concentration in the plant tissues was the largest(from 34%to 162%),followed by the increase in P(from 10%to 33%)and C(from 8%to 24%)concentrations.The aboveground biomass was positively and linearly correlated with leaf C,N and P,and soil C and N concentrations,while the belowground biomass was positively and linearly correlated with leaf N and soil C concentrations.These results showed that the accumulation of N and P in the leaves caused the increase in the aboveground biomass,while the accumulation of leaf N resulted in the increase in the belowground biomass.N deposition can alter the allocation of C,N and P stoichiometry in the plant tissues and has a high potential for increasing plant biomass,which is conducive to the restoration of sandy grassland.
基金supported by the National Natural Science Foundation of China(Grant Nos.32171759,31730014).
文摘Background:The replanting of broadleaved trees in pure coniferous plantations is widely implemented,as mixed plantations are generally more stable and functional.However,the effect of interspecific interactions between broadleaved and coniferous trees on internal nutrient cycles of conifers remains unclear.Methods:We selected pure coniferous plantations of a native(Pinus massoniana)and an exotic(P.elliottii)pine species and their corresponding mixed plantations with broadleaved trees(Schima superba)in subtropical China,and measured the nitrogen(N)and phosphorus(P)contents in the rhizosphere soils,fine roots,twigs,needles and needle litter of pines.We calculated the root capture,needle resorption and translocation of N and P by pines to determine the mobility of nutrients in trees.Results:Although the N and P in the rhizosphere soils increased due to the replanting of broadleaved trees,the N and P contents in the aboveground tissues of the two pine species did not increase in mixed plantations.Mixed planting had a negative effect on the N and P capture of native pine and a positive effect on that of exotic pine.The N and P resorption efficiencies increased in native pine but were unchanged in exotic pine after the replanting of S.superba.Native pine preferentially employed an aboveground nutrient resorption strategy,whereas exotic pine tended to adopt a belowground nutrient capture strategy after replanting.Translocation of N and P in trees was detected,which reflected the trade-offs between root nutrient capture and needle nutrient resorption.Conclusions:The effect of mixed planting varied between the species of native and exotic pines,and the internal nutrient cycles of both pine species might be dominated by interspecific interaction effects on nutrients rather than soil nutrients.Our study highlights the importance of selecting suitable broadleaved species for replanting in coniferous plantations.
文摘Eleven red soils varying in land use and fertility status were used to examine the effect of land use on microbial biomass C, N and P. Microbial biomass C in the red soils ranged from about 68 mg C/kg to 225 mg C/kg, which is generally lower than that reported from other types of soil, probably because of low organic matter and high acidity in the red soils. Land use had considerable effects on the amounts of soil C mic . The C mic was the lowest in eroded fallow land, followed by woodland, tea garden, citrus grove and fallow grassland, and the highest in vegetable and paddy fields. There was significant correlation between C mic and organic matter content, suggesting that the influence of land use on C mic is mainly related to the input and accumulation of organic matter. Microbial biomass N in the soils ranged from 12.1 Nmg/kg to 31.7 Nmg/kg and was also affected by land use. The change of N mic with land use was similar to that of C mic . The microbial C/N ratio ranged from 5.2 to 9.9 and averaged 7.6. The N mic was significantly correlated with soil total N and available N. Microbial biomass P in the soils ranged from 4.5 mg P/kg to 52.3 mg P/kg. The microbial C/P ratio was in the range of 4-23. The P mic was relatively less affected by land use due to differences in fertilization practices for various land use systems.
基金supported by the National Natural Science Foundation of China(32172679 and 31902122).
文摘Shaanxi is a leading province in animal husbandry(AH)in China.However,the lack of provincial information on the characteristics and utilization potential of livestock manure(LM)hinders crucial management decisions.Therefore,we investigated the spatiotemporal distribution,availability and biogas potential of LM in Shaanxi,and examine the carbon emission reduction potential of AH.There has been a 1.26-fold increase in LM quantities in Shaanxi over the past 35 years,reaching 4635.6×10^(4)t by 2021.LM was mainly concentrated in northern Shaanxi and the eastern part of Hanzhong.Cattle and pig manure were the primary sources of LM,with the average LM land-load of 14.57 t·ha^(−1)in 2021.While the overall AH in Shaanxi has not exceeded the environmental capacity,the actual scales of AH in Ankang and Hanzhong have already surpassed the respective environmental capacities,posing a higher risk of N and P pollutions.In 2021,the estimated biogas energy potential of LM was 1.2×10^(11)MJ.From 2012 to 2021,the average carbon emission reduction potential in Shaanxi was 22%,with an average potential scale of 10%.The results of this research provide valuable data and policy recommendations for promoting the intensive use of LM and reducing carbon emissions in Shaanxi.
文摘Three new ent-kaurene diterpenoids, adenanthins N, 0 and P (1-3), and four known diterpenoids, leucophyllin E (4), glabcensin C (5), adenanthin A (6), leucophyllin B (7), together with a highly unsaturated fatty acid, 9,16-dioxo-10,1 2,14-octadeca-trienoic acid (8), were isolated from Isodon adenanthus (Diels) Kudo. The structure of compound 4 was revised accordingly. Compound I showed significant cytotoxic activity against K562 cells with IC50 = 0.45 mug/mL.
基金supported by the International Atomic Energy Agency through coordination research projects(CRP)under Research Contract No.23008 and technical cooperation project(TCP)RAS 5084,and the Central Public-interest Scientific Institution Basal Research Fund(No.BSRF202004)Funding for AC to collaborate on this work was provided by the High-end Foreign Experts Recruitment Program from State of Administration of Foreign Experts Affairs of ChinaThis work was partly supported by the Science and Technology Major Project of Guangxi(Guike AA17204078).
文摘Intensive farming is a primary cause of increased sediment and associated nitrogen(N)and phosphorus(P)loads in surface water systems.Determining their contributing sources,pathways and loads present major challenges in the high-intensity agricultural catchments.Herein,we quantify the sediment sources and magnitude of sediment total N and total P from different sources using a novel application of compound-specific stable isotope(CSSI)and fallout radionuclides(FRNs)of^(137)cs and^(210)pbex in an intensive agricultural catchment in North China.Sediment sources from surface and sub-surface soils were estimated from FRNs fingerprint and accounted for 62±7%and 38±7%respectively,while surface soil from land uses that originated from hillslope were identified by CssI fingerprint.Using a novel application of FRNs and CSSI sediment fingerprinting techniques,the dominant sediment source was derived from maize farmland(44±0.1%),followed by channel bank(38±7%).The sedimentation rate(13.55±0.30 t ha^(-1)yr^(-1))was quantifed by the^(137)cs cores(0-60 cm)at the outlet of this catchment.The total N and total P in sediment were both mostly derived from maize farmland and least from channel banks.The channel banks are significant sediment sources but contribute little to the input of sediment N and P for eutrophication.It implies that chemically-applied farmlands are the main hotspots for catchment erosion control and pollution prevention.The novel application of FRNs and CSSI techniques cost-effectively quantified sediment N and P loads from different sources with a single visit to the catchment,enabling rapid assessment for optimizing soil conservation strategies and land management practices.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0201202,No.2016YFD030080101,No.2022YFD1500701)supported by the Chinese Universities Scientific Fund under award numbers 1191-15051002,1191-10092004,and 1191-31051204.
文摘Investigating the impact of apple-dominated areas on nitrogen(N)and phosphorus(P)losses at a basin scale was essential for the sustainable development of apple industry in China.This study conducted a survey on fertilizer application and built a Soil and Water Assessment Tool(SWAT)model to quantita-tively analyze the N and P losses in the Qixia apple-dominated area.Additionally,the decreases in N and P losses through adjusting the fertilizer application modes were evaluated.Results showed that average N and P losses in the Wulong River Basin(WRB)were 44.4 and 0.365 kg ha^(-1)in 2011-2017,respectively,and apple orchards accounted for 733%and 51.4%of the total N and P losses in the basin.Under nine fertilizer scheduling scenarios,three fertilizer schedule scenarios,automatic fertilizer application(S-AUTO),"one shot"mode(S1),and regulated fertilizer application(S-BSD),had the lowest N and P losses in apple orchards.The decreases in N loss ranged from 20.6%to 26.1%at the subbasin scale and 14.8%-30.7%at the basin outlet when applying the S-AUTO,S1,and S-BSD fertilizer application modes in Qixia apple orchards and all apple orchards in the WRB.The reductions in P loss varied from 22.0%to 46.1%at the subbasin scale and 14.6%-25.6%at the basin outlet.In orchard-dominated basin,N and P losses can be effectively reduced by optimizing the orchard fertilizer scheduling strategies.
基金Acknowledgements This work was financially supported by National Natural Science Foundation of China (No. 21425103) and Natural Science Foundation of Jiangsu Province (No. SBK201341397).
文摘Cost-effective electrocatalysts for the hydrogen evolution reaction (HER) play a key role in the field of renewable energy. Although tremendous efforts have been devoted to the search of alternative materials, Pt/C is still the most efficient electrocatalyst for the HER. Nevertheless, decreasing the loading of Pt in the designed eletrocatalysts is of significance. However, with low Pt loading, it is challenging to maintain excellent catalytic performance. Herein, a new catalyst (Pt/NPC) was prepared by dispersing Pt nanoparticles (PtNPs) with an average diameter of 1.8 nm over a three-dimensional (3D) carbon network co-doped with N and P. Because of the high electronegativity of the N and P dopants, PtNPs were uniformly dispersed on the carbon network via high electronic affinity between Pt and carbon, affording a Pt/NPC catalyst; Pt/NPC exhibited superior HER activity, attributed to the down-shift of the Pt d-band caused by the donation of charge from N and P to Pt. The results show that Pt/NPC with an ultralow Pt loading of 1.82 wt.% exhibits excellent HER performance, which corresponds to a HER mass activity 20.6-fold greater than that observed for commercial 20% Pt/C at an overpotential of 20 mV vs. RHE.
基金supported by the National Natural Science Foundation of China(Grant Nos.31870602,31901295,and 32071745)the Program of Sichuan Excellent Youth Sci-Tech Foundation(20JCQN0145)+2 种基金the Chinese Postdoctoral Science Foundation(2020M673278)the CAS“Light of West China”Program(Y8C2021)Chengming You also acknowledges the China Scholarship Council for supporting a Ph.D.programme Grant(201806910030)。
文摘Background:Changes in foliar nitrogen(N)and phosphorus(P)stoichiometry play important roles in predicting the efects of global change on ecosystem structure and function.However,there is substantial debate on the efects of P addition on foliar N and P stoichiometry,particularly under diferent levels of N addition.Thus,we conducted a global meta-analysis to investigate how N addition alters the efects of P addition on foliar N and P stoichiometry across different rates and durations of P addition and plant growth types based on more than 1150 observations.Results:We found that P addition without N addition increased foliar N concentrations,whereas P addition with N addition had no efect.The positive efects of P addition on foliar P concentrations were greater without N addition than with N addition.Additionally,the efects of P addition on foliar N,P and N:P ratios varied with the rate and duration of P addition.In particular,short-term or low-dose P addition with and without N addition increased foliar N concentration,and the positive efects of short-term or low-dose P addition on foliar P concentrations were greater without N addition than with N addition.The responses of foliar N and P stoichiometry of evergreen plants to P addition were greater without N addition than with N addition.Moreover,regardless of N addition,soil P availability was more efective than P resorption efciency in predicting the changes in foliar N and P stoichiometry in response to P addition.Conclusions:Our results highlight that increasing N deposition might alter the response of foliar N and P stoichiometry to P addition and demonstrate the important efect of the experimental environment on the results.These results advance our understanding of the response of plant nutrient use efciency to P addition with increasing N deposition.