Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their r...Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates.展开更多
Objective The aim was to elucidate the effects of N rates on rice canopy microclimate and community health so as to provide a sci- entific basis for studying the production potential in irrigated rice with healthy can...Objective The aim was to elucidate the effects of N rates on rice canopy microclimate and community health so as to provide a sci- entific basis for studying the production potential in irrigated rice with healthy canopy. Method The effects of rice population structure traits under different N rates on rice canopy temperature, relative humidity ( RH), light transmittance and sheath blight were studied by using Sunscan canopy analysis system and HOBO( Pro Temp/RH IS logger). Result The results showed that leaf area index, plant height and tiller number had significant effects on canopy cooling, RH enhancing and light reducing. Extremely significant multiple linear regression relationships existed among canopy day temperature, day RH, LAI and tiller number, and among light transmittance, tiller number and plant height. At flowering stage, per unit LAI could result in a day-maximum-temperature (Tmax) deceasing of 0.87℃ and a day-minimum-RH (RHmin) enhancing of 2.5% within canopy. Similarly, 100 plants per ms could respectively cause a Tmax deceasing of 1.23℃ and an RHmin enhancing of 3.3% in rice canopy. And per 10 cm plant height and 100 plants per m^2 could respectively reduce 9.3% and 7.8% of light in canopy. Conclusion Sheath blight disease index was significantly enhanced as the canopy day temperature decreased, day RH increased and light transmittance reduced. Bigger canopy from higher nitrogen level treatment leads to a more stable canopy microclimate with little changes in temperature and RH during day and night, which has the risk of worsening canopy health. Thus, moderately controlling the space development of canopy is the basis of constructing healthy canopy in rice.展开更多
Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried ou...Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China.Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0,60,and 180 kg N ha^(-1).Dry weights and N contents of rice plants were measured at tillering,initiation,anthesis,and maturity.Grain yields exhibited significant differences (P<0.05)among the cultivars and N application rates.Increasing N rates improved N uptake at anthesis and maturity in all four cultivars(P<0.05).N translocation from vegetative organs to the grains increased with enhanced N rates (P<0.05).N translocation to the grains ranged from 9 to 64 kg N ha^(-1)and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis(r^2=0.78^(**))and N translocation(r^2=0.67^(**)).Thus,cultivars with a high N uptake at anthesis,low residual N in the straw at maturity,and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.展开更多
Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. ...Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. We compiled data of observations from 10 long-term fertilization experiments and conducted a meta-analysis of the effects of long-term fertilization on soil gross N transformation rates. The results showed that if chemical fertilizers of N, P and K were applied in balance, soil p H decreased very slightly. There was a significantly positive effect of long-term fertilization, either chemical or organic fertilizers or their combinations, on gross N mineralization rate compared to the control treatment(the mean effect size ranged from 1.21 to 1.25 at 95% confidence intervals(CI) with a mean of 1.23), mainly due to the increasing soil total N content. The long-term application of organic fertilizer alone and combining organic and chemical fertilizer could increase the mineralization-immobilization turnover, thus enhance available N for plant while reduce N losses potential compared to the control treatment. However, long-term chemical fertilizer application did not significantly affect the gross NH4+ immobilization rate, but accelerated gross nitrification rate(1.19; 95% CI: 1.08 to 1.31). Thus, long-term chemical fertilizer alone would probably induce higher N losses potential through NO3– leaching and runoff than organic fertilizer application compared to the control treatment. Therefore, in the view of the effects of long-term fertilization on gross N transformation rates, it also supports that organic fertilizer alone or combination of organic and chemical fertilizer could not only improve crop yield, but also increase soil fertility and reduce the N losses potential.展开更多
In this paper, field trials in two soils with different Nmin were conducted to study the effects of mineral N content (Nmin) in soil on the maximum yield N rate (MYNR), N recovery of cabbage under spring cabbage-m...In this paper, field trials in two soils with different Nmin were conducted to study the effects of mineral N content (Nmin) in soil on the maximum yield N rate (MYNR), N recovery of cabbage under spring cabbage-maize-winter cabbage rotation system, and the correlation of N fertilization with cabbage yield and quality, and to provide the theoretical basis for N recommendation for high-yield, quality, and safety production of vegetables. The effects of six N rates of 0, 90, 180, 270, 360, and 450 kg ha-1 on the yield, N recovery of spring cabbage, maize, and winter cabbage, water-soluble sugar, Vc, and nitrate content of vegetables were observed. The results showed that soil Nmin had a remarkable influence on the MYNR in the first spring cabbage season. The MYNR for spring cabbage lessened in the soil with high Nmin. Soil Nmin, could be helpful to N recommendation only for the seasonal growing crop because its effects on the following crop yield was less with the active transformation of soil Nmin. The farmer's practice was 1.8-3.2 times higher than the MYNR of cabbage resulted in the nitrate enrichment of groundwater. Both N application rate and Nmin. in the soil profile affected N recovery, whereas, the relay intercropping maize in the cabbage field increased the N recovery at a higher N application rate. Lower N rate (less than 90 kg ha-1) improved the yield and quality of cabbage at the same time; higher N rates increased cabbage yield, but decreased the quality; extremely high N rates of application deceased both yield and quality of cabbage. It was concluded that the soil Nmin had close correlations with MYNR and N recovery of the seasonal growing cabbage. Although the residual effects of the N fertilizer were obvious in Shajiang black meadow soil, cabbage-maize rotation increased the N recovery in treatments with higher N rates. Considering the effects of N rates on cabbage yield and quality, it is necessary to reduce the N rate and lower the yield target for obtaining a better quality of vegetable produce.展开更多
Soil organic carbon (SOC) and soil inorganic carbon (SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen...Soil organic carbon (SOC) and soil inorganic carbon (SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen (N) fertilization rates are not clear in this area. A long-term field experiment started in June 2003 was conducted to investigate the SOC and SIC stocks in a calcareous soil of the Chinese Loess Plateau under four cultivation practices, i.e., fallow (FA), conventional cultivation (CC), straw mulch (SM), and plastic film-mulched ridge and straw-mulched furrow (RF), in combination with three N fertilization rates, i.e., 0 (NO), 120 (N120), and 240 (N240) kg N/hm2. Results indicate that the crop straw addition treatments (SM and RF) increased the contents of soil microbial biomass C (SMBC) and SOC, and the SOC stock increased by 10.1%-13.3% at the upper 20 cm soil depth in comparison to the 8-year fallow (FA) treatment. Meanwhile, SIC stock significantly increased by 19% at the entire tested soil depth range (0-100 cm) under all crop cultivation practices in comparison to that of soil exposed to the long-term fallow treatment, particularly at the upper 60 cm soil depth. Furthermore, moderate N fertilizer application (120 kg N/hm2) increased SOC stock at the upper 40 cm soil depth, whereas SIC stock decreased as the N fertilization rate increased. We conclude that the combined application of crop organic residues and moderate N fertilization rate could facilitate the sequestrations of SOC and SIC in the calcareous soil.展开更多
A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a bl...A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a black soil was conducted from 2004 to 2005 in Heilongjiang Province. The results showed that the nitrogen application rates at 45 kg·hm^-2 with the ratio of 75% NO3-N to 25% NH4-N resulted in the highest potassium and reducing sugar contents in the flue-cured tobacco leaving with the highest quality grade and value. It is recommended that this ni- trogen application rate and NO3-N to NH4-N ratio should be widely applied on flue-cured tobacco grown in the black soil in Heilongjiang Province.展开更多
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef...Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau.展开更多
Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on c...Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.展开更多
Experiments were carried out on a vegetable field with Peking cabbage(Brassica pekinensis (Lour.) Rupr.), cabbage (Brassica, chinensis var. oleifcra Makino and nemoto),green cabbage (Brassica chinensis L.), spinach (S...Experiments were carried out on a vegetable field with Peking cabbage(Brassica pekinensis (Lour.) Rupr.), cabbage (Brassica, chinensis var. oleifcra Makino and nemoto),green cabbage (Brassica chinensis L.), spinach (Spinacia oleracea L.) and rape(Brassica campestrisL.) to study the effects of N forms and N rates on their growth and nitrate accumulation. Theresults indicated that application of ammonium chloride, ammonium nitrate, sodium nitrate and ureasignificantly increased the yields and nitrate concentrations of Peking cabbage and spinach.Although no significant difference was found in the yields after application of the 4 N forms,nitrate N increased nitrate accumulation in vegetables much more than ammonium N. The vegetableyields were not increased continuously with N rate increase, and oversupply of N reduced the plantgrowth, leading to a yield decline. This trend was also true for nitrate concentrations in somevegetables and at some sampling times. However, as a whole, the nitrate concentrations in vegetableswere positively correlated with N rates. Thus, addition of N fertilizer to soil was the major causefor increases in nitrate concentrations in vegetables. Nitrate concentrations were much higher inroots, stems and petioles than in blades at any N rate.展开更多
Nitrogen rate trials are often performed to determine the economically optimum N application rate. For this purpose, the yield is modeled as a function of the N application. The regression analysis provides an estimat...Nitrogen rate trials are often performed to determine the economically optimum N application rate. For this purpose, the yield is modeled as a function of the N application. The regression analysis provides an estimate of the modeled function and thus also an estimate of the economic optimum, Nopt. Obtaining the accuracy of such estimates by confidence intervals for Nopt is subject to the model assumptions. The dependence of these assumptions is a further source of inaccuracy. The Nopt estimate also strongly depends on the N level design, i.e., the area on which the model is fitted. A small area around the supposed Nopt diminishes the dependence of the model assumptions, but prolongs the confidence interval. The investigations of the impact of the mentioned sources on the inaccuracy of the Nopt estimate rely on N rate trials on the experimental field Sieblerfeld (Bavaria). The models applied are the quadratic and the linear-plus-plateau yield regression model.展开更多
Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixa...Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixation in the global ocean remain uncertain,partly because of the lack of methodological uniformity.The^(15)N_(2)tracer assay(the original bubble method→the^(15)N_(2)-enriched seawater method→the modified bubble method)is the mainstream method for field measurements of N2 fixation rates(NFRs),among which the original bubble method is the most frequently used.However,accumulating evidence has suggested an underestimation of NFRs when using this method.To improve the availability of previous data,we compared NFRs measured by three^(15)N_(2)tracer assays in the South China Sea.Our results indicate that the relationship between NFRs measured by the original bubble method and the^(15)N_(2)-enriched seawater method varies obviously with area and season,which may be influenced by incubation time,diazotrophic composition,and environmental factors.In comparison,the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable,indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%.Based on this result,we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a).Our results improve the availability and comparability of literature NFR data in the South China Sea.The comparison of the^(15)N_(2)tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.展开更多
The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carrie...The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.展开更多
The effects of different basic seedlings, N application rates and paclobutrazol measures on the development and yield of Tongyoujing 1 population were studied through the D-saturated optimum regression design tests. T...The effects of different basic seedlings, N application rates and paclobutrazol measures on the development and yield of Tongyoujing 1 population were studied through the D-saturated optimum regression design tests. The results showed thatthe effects of various factors on yield under the experimental conditions were in order of N application rate basic seedlings paclobutrazol dosage. The increases of basic seedlings and N application rate are beneficial to the increases of population quantity and tiller density, and could improve number of panicles per unit area and increase the population leaf area and accumulated amount of dry matter.However, too-high basic seedlings and N application rate would reduce reproductive tiller percentage and economic coefficient, and prolong growth duration. Proper basic seedlings could coordinate the correlation between tiller density and productive tiller percentage, ensure higher leaf area and dry matter accumulation at filling stage,and improve yield of Tongyoujing 1. According to the multivariate nonlinear regression analysis of yield with various factors, Tongyoujing 1 could reach its maximum yield potential of 12 606.0 kg/hm2 under the basic seedlings of 55.2×104/hm2, N application rate at 339.2 kg/hm2, and paclobutrazol dosage of 97.9 g/hm2. The comprehensive agricultural measures for a yield higher than 11 250 kg/hm2were: basic seedlings 52.6 ×10^4-60.1 ×10^4/hm2, N application rate 328.0-356.1 kg/hm2, and paclobutrazol dosage 87.6-104.6 g/hm2.展开更多
The growth period, population tiller dynamics, plant characters, paniclegrain structure, yielding ability and stress resistance of a wheat variety Heibaoshi 1 were studied using a two-factor split plot design to inves...The growth period, population tiller dynamics, plant characters, paniclegrain structure, yielding ability and stress resistance of a wheat variety Heibaoshi 1 were studied using a two-factor split plot design to investigate the effects of different density and fertilizer levels on individual development and yield of Heibaoshi 1 in riparian region of Jiangsu Province. In addition, high-yielding agronomic measures were explored through multiple non-linear regression analysis. The results showed that low density was not conducive to the formation of panicles, while high density affected grain number per panicle; low fertilizer level restricted individual development, while high fertilizer level affected grain number per panicle and grain weight and was prone to leading to lodging. Reasonable combination of density and fertilizer could coordinate individual development and balance panicle, grain and weight, thus achieving a high yield. The yield potential was highest (7 384.3 kg/hm2) under density of 239.6×104 basic seedlings/hm2 and N level of 237.7 kg/hm2. When the planting density ranged from 200×104 to 270×104 basic seedlings/hm2 and the N level ranged from 220 to 260 kg/hm2 or the density basic seedling number ranged from 210×104/hm2 to 260×104/hm2 and the N level ranged from 210 to 270 kg/hm2, the yield could exceed 7 200 kg/hm2.展开更多
The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed ...The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g?1DW·h?1, respectively. Keywords Trees - N2O emission rate - Soil water stress - broadleaf/Korean pine forest - Changbai Mountain CLC number S718.55 Document code A Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407)Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
Insufficient N supply is an important constraint to productivity of lowland rice. Studies on N nutrition of rice cultivars with different durations representing the north western part of Indo-Gangetic Plains are scant...Insufficient N supply is an important constraint to productivity of lowland rice. Studies on N nutrition of rice cultivars with different durations representing the north western part of Indo-Gangetic Plains are scanty. A field experiment was conducted during kharif seasons of 2006 and 2007 at PAU, Ludhiana to assess the differences in grain yield and N utilization of three popular rice cultivars at varying N doses. Significant differences among genotypes were observed in grain yield, N uptake, N use efficiency and N utilization efficiency. The cultivar PAU-201 was found to be superior among all the tested genotypes. Total N uptake and grain N uptake was highest in cultivar PAU-201 followed by cultivars PR-115 and PR-113. On an average, the response to applied N for grain yield was observed upto 90 kg N ha1. Grain yield increased significantly up to 90 kg N hal in cultivars PR-115 and PAU-201 and up to 120 kg N ha1 in PR-113. Apparent recovery efficiency (ARE) and Partial factor productivity (PFPN) of N was significantly reduced at higher level of N (150 kg N hal). It was concluded that N uptake is predominant factor in grain yield formation and cultivars differ in NUE suggesting that it may be possible to develop cultivars that are efficient at low nutrient level or are capable of using N more efficiently when applied as fertilizer.展开更多
Although nitrogen (N) loss through runoff and leaching from croplands is suspected to contribute to the deterioration of surrounding water systems, there is no conclusive evidence for paddy soils to prove this hypot...Although nitrogen (N) loss through runoff and leaching from croplands is suspected to contribute to the deterioration of surrounding water systems, there is no conclusive evidence for paddy soils to prove this hypothesis. In this study, field plot experiments were conducted to investigate N losses through runoff and leaching for two consecutive years with 3 N fertilization rates in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) rotations in the Taihu Lake region, China. A water collection system was designed to collect runoff and leachates for both the rice and wheat seasons. Results showed that dissolved N (DN), rather than particulate N (PN), was the main form of N loss by runoff. The NO3^--N concentration in runoff was between 0.1 and 43.7 mg L^-1, whereas the NH4^+-N concentration ranged from below detection limit to 8.5 mg L^-1. Total N (TN) loads by runoff were 1.0-17.9 and 5.2-38.6 kg ha^-1 during rice and wheat seasons, respectively, and the main loss occurred at the early growing stage of the crops. Nitrogen concentrations in leachates during the rice seasons were below 1.0 mg L^-1 and independent of the N application rate, whereas those during the wheat season increased to 8.2 mg L^-1 and were affected by the fertilizer rate. Annual losses of TN through runoff and leaching were 13.7-48.1 kg ha^-1 from the rice-wheat cropping system, accounting for 5.6%-8.3% of the total applied N. It was concluded that reduction in the N fertilization rate, especially when the crop was small in biomass, could lower the N pollution potential for water systems.展开更多
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N ferti...Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.展开更多
Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper...Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.展开更多
基金the National Natural Science Foundation of China(32071947,32071944,31871557)the Open Project of Jiangsu Key Laboratory of Crop Genetics and Physiology(YCSL202102)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu province(KYCX21_3235).
文摘Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates.
基金Supported by Oversea Project of National Natural and Science Foundationof China(30528005)RTOP Project of International RiceResearch Institute(IRRI)+1 种基金Grain High-yield Project of China(2004BA520A12)And 948 Introduction Project of the Ministry ofAgriculture(2003-Z53)~~
文摘Objective The aim was to elucidate the effects of N rates on rice canopy microclimate and community health so as to provide a sci- entific basis for studying the production potential in irrigated rice with healthy canopy. Method The effects of rice population structure traits under different N rates on rice canopy temperature, relative humidity ( RH), light transmittance and sheath blight were studied by using Sunscan canopy analysis system and HOBO( Pro Temp/RH IS logger). Result The results showed that leaf area index, plant height and tiller number had significant effects on canopy cooling, RH enhancing and light reducing. Extremely significant multiple linear regression relationships existed among canopy day temperature, day RH, LAI and tiller number, and among light transmittance, tiller number and plant height. At flowering stage, per unit LAI could result in a day-maximum-temperature (Tmax) deceasing of 0.87℃ and a day-minimum-RH (RHmin) enhancing of 2.5% within canopy. Similarly, 100 plants per ms could respectively cause a Tmax deceasing of 1.23℃ and an RHmin enhancing of 3.3% in rice canopy. And per 10 cm plant height and 100 plants per m^2 could respectively reduce 9.3% and 7.8% of light in canopy. Conclusion Sheath blight disease index was significantly enhanced as the canopy day temperature decreased, day RH increased and light transmittance reduced. Bigger canopy from higher nitrogen level treatment leads to a more stable canopy microclimate with little changes in temperature and RH during day and night, which has the risk of worsening canopy health. Thus, moderately controlling the space development of canopy is the basis of constructing healthy canopy in rice.
基金Project supported by the National Natural Science Foundation of China(Nos.30390082 and 3027079)the Science and Technology Committee of Jiangsu Province,China(No.BE2005369).
文摘Developing high-yielding rice(Oryza sativa L.)cultivars depends on having a better understanding of nitrogen(N) accumulation and translocation to the ear during the reproductive stage.Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China.Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0,60,and 180 kg N ha^(-1).Dry weights and N contents of rice plants were measured at tillering,initiation,anthesis,and maturity.Grain yields exhibited significant differences (P<0.05)among the cultivars and N application rates.Increasing N rates improved N uptake at anthesis and maturity in all four cultivars(P<0.05).N translocation from vegetative organs to the grains increased with enhanced N rates (P<0.05).N translocation to the grains ranged from 9 to 64 kg N ha^(-1)and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis(r^2=0.78^(**))and N translocation(r^2=0.67^(**)).Thus,cultivars with a high N uptake at anthesis,low residual N in the straw at maturity,and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.
基金supported by the National Natural Science Foundation of China (41330744)the “973” Program of China (2014CB953803)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (164320H116)
文摘Application of fertilizer has been found to significantly affect soil N cycling. However, a comprehensive understanding of the effects of long-term fertilization on soil gross N transformation rates is still lacking. We compiled data of observations from 10 long-term fertilization experiments and conducted a meta-analysis of the effects of long-term fertilization on soil gross N transformation rates. The results showed that if chemical fertilizers of N, P and K were applied in balance, soil p H decreased very slightly. There was a significantly positive effect of long-term fertilization, either chemical or organic fertilizers or their combinations, on gross N mineralization rate compared to the control treatment(the mean effect size ranged from 1.21 to 1.25 at 95% confidence intervals(CI) with a mean of 1.23), mainly due to the increasing soil total N content. The long-term application of organic fertilizer alone and combining organic and chemical fertilizer could increase the mineralization-immobilization turnover, thus enhance available N for plant while reduce N losses potential compared to the control treatment. However, long-term chemical fertilizer application did not significantly affect the gross NH4+ immobilization rate, but accelerated gross nitrification rate(1.19; 95% CI: 1.08 to 1.31). Thus, long-term chemical fertilizer alone would probably induce higher N losses potential through NO3– leaching and runoff than organic fertilizer application compared to the control treatment. Therefore, in the view of the effects of long-term fertilization on gross N transformation rates, it also supports that organic fertilizer alone or combination of organic and chemical fertilizer could not only improve crop yield, but also increase soil fertility and reduce the N losses potential.
文摘In this paper, field trials in two soils with different Nmin were conducted to study the effects of mineral N content (Nmin) in soil on the maximum yield N rate (MYNR), N recovery of cabbage under spring cabbage-maize-winter cabbage rotation system, and the correlation of N fertilization with cabbage yield and quality, and to provide the theoretical basis for N recommendation for high-yield, quality, and safety production of vegetables. The effects of six N rates of 0, 90, 180, 270, 360, and 450 kg ha-1 on the yield, N recovery of spring cabbage, maize, and winter cabbage, water-soluble sugar, Vc, and nitrate content of vegetables were observed. The results showed that soil Nmin had a remarkable influence on the MYNR in the first spring cabbage season. The MYNR for spring cabbage lessened in the soil with high Nmin. Soil Nmin, could be helpful to N recommendation only for the seasonal growing crop because its effects on the following crop yield was less with the active transformation of soil Nmin. The farmer's practice was 1.8-3.2 times higher than the MYNR of cabbage resulted in the nitrate enrichment of groundwater. Both N application rate and Nmin. in the soil profile affected N recovery, whereas, the relay intercropping maize in the cabbage field increased the N recovery at a higher N application rate. Lower N rate (less than 90 kg ha-1) improved the yield and quality of cabbage at the same time; higher N rates increased cabbage yield, but decreased the quality; extremely high N rates of application deceased both yield and quality of cabbage. It was concluded that the soil Nmin had close correlations with MYNR and N recovery of the seasonal growing cabbage. Although the residual effects of the N fertilizer were obvious in Shajiang black meadow soil, cabbage-maize rotation increased the N recovery in treatments with higher N rates. Considering the effects of N rates on cabbage yield and quality, it is necessary to reduce the N rate and lower the yield target for obtaining a better quality of vegetable produce.
基金supported by the National Natural Science Foundation of China (41671295)the National Technology R&D Pillar Program in the 12th Five Year Plan of China (2012BAD15B04)
文摘Soil organic carbon (SOC) and soil inorganic carbon (SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen (N) fertilization rates are not clear in this area. A long-term field experiment started in June 2003 was conducted to investigate the SOC and SIC stocks in a calcareous soil of the Chinese Loess Plateau under four cultivation practices, i.e., fallow (FA), conventional cultivation (CC), straw mulch (SM), and plastic film-mulched ridge and straw-mulched furrow (RF), in combination with three N fertilization rates, i.e., 0 (NO), 120 (N120), and 240 (N240) kg N/hm2. Results indicate that the crop straw addition treatments (SM and RF) increased the contents of soil microbial biomass C (SMBC) and SOC, and the SOC stock increased by 10.1%-13.3% at the upper 20 cm soil depth in comparison to the 8-year fallow (FA) treatment. Meanwhile, SIC stock significantly increased by 19% at the entire tested soil depth range (0-100 cm) under all crop cultivation practices in comparison to that of soil exposed to the long-term fallow treatment, particularly at the upper 60 cm soil depth. Furthermore, moderate N fertilizer application (120 kg N/hm2) increased SOC stock at the upper 40 cm soil depth, whereas SIC stock decreased as the N fertilization rate increased. We conclude that the combined application of crop organic residues and moderate N fertilization rate could facilitate the sequestrations of SOC and SIC in the calcareous soil.
文摘A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a black soil was conducted from 2004 to 2005 in Heilongjiang Province. The results showed that the nitrogen application rates at 45 kg·hm^-2 with the ratio of 75% NO3-N to 25% NH4-N resulted in the highest potassium and reducing sugar contents in the flue-cured tobacco leaving with the highest quality grade and value. It is recommended that this ni- trogen application rate and NO3-N to NH4-N ratio should be widely applied on flue-cured tobacco grown in the black soil in Heilongjiang Province.
基金financially supported by the National Key R&D Program of China (2022YFD1900702 and 2021YFD1900700)the Key Research and Development Program of Shaanxi, China (2023-ZDLNY-52)the National Natural Science Foundation of China (42077102)
文摘Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau.
文摘Technologies for reducing corn leaf burn caused by foliar spray of urea-ammonium nitrate (UAN) during the early growing season are limited. A field experiment was carried out to evaluate the effects of humic acid on corn leaf burn caused by foliar spray of undiluted UAN solution on corn canopy at Jackson, TN in 2018. Thirteen treatments of the mixtures of UAN and humic acid were evaluated at V6 of corn with different UAN application rates and different UAN/humic acid ratios. Leaf burn during 1 2, 3, 4, 5, 6, 7, and 14 days after UAN foliar spray significantly differed between with or without humic acid addition. The addition of humic acid to UAN significantly reduced leaf burn at each UAN application rate (15, 25, and 35 gal/acre). The reduction of leaf burn was enhanced as the humic acid/UAN ratio went up from 10% to 30%. Leaf burn due to foliar application of UAN became severer with higher UAN rates. The linear regression of leaf burn 14 days after application with humic acid/UAN ratio was highly significant and negative. However, the linear regression of leaf burn 14 days after application with the UAN application rate was highly significant and positive. In conclusion, adding humic acid to foliar-applied UAN is beneficial for reducing corn leaf burn during the early growing season.
基金Project supported by the National Key Basic Research Support Foundation (No. G1999011707)the National Natural Science Foundation of China (Nos. 39970429, 49890330, 30070429 and 40201028).
文摘Experiments were carried out on a vegetable field with Peking cabbage(Brassica pekinensis (Lour.) Rupr.), cabbage (Brassica, chinensis var. oleifcra Makino and nemoto),green cabbage (Brassica chinensis L.), spinach (Spinacia oleracea L.) and rape(Brassica campestrisL.) to study the effects of N forms and N rates on their growth and nitrate accumulation. Theresults indicated that application of ammonium chloride, ammonium nitrate, sodium nitrate and ureasignificantly increased the yields and nitrate concentrations of Peking cabbage and spinach.Although no significant difference was found in the yields after application of the 4 N forms,nitrate N increased nitrate accumulation in vegetables much more than ammonium N. The vegetableyields were not increased continuously with N rate increase, and oversupply of N reduced the plantgrowth, leading to a yield decline. This trend was also true for nitrate concentrations in somevegetables and at some sampling times. However, as a whole, the nitrate concentrations in vegetableswere positively correlated with N rates. Thus, addition of N fertilizer to soil was the major causefor increases in nitrate concentrations in vegetables. Nitrate concentrations were much higher inroots, stems and petioles than in blades at any N rate.
文摘Nitrogen rate trials are often performed to determine the economically optimum N application rate. For this purpose, the yield is modeled as a function of the N application. The regression analysis provides an estimate of the modeled function and thus also an estimate of the economic optimum, Nopt. Obtaining the accuracy of such estimates by confidence intervals for Nopt is subject to the model assumptions. The dependence of these assumptions is a further source of inaccuracy. The Nopt estimate also strongly depends on the N level design, i.e., the area on which the model is fitted. A small area around the supposed Nopt diminishes the dependence of the model assumptions, but prolongs the confidence interval. The investigations of the impact of the mentioned sources on the inaccuracy of the Nopt estimate rely on N rate trials on the experimental field Sieblerfeld (Bavaria). The models applied are the quadratic and the linear-plus-plateau yield regression model.
基金The National Natural Science Foundation of China under contract Nos 42076042 and 41721005the Fund of Ministry of Science and Technology of China under contract No.2017FY201403the Fund of China Ocean Mineral Resources R&D Association under contract No.DY135-13-E2-03.
文摘Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes.The distribution,controlling factors,and flux of N2 fixation in the global ocean remain uncertain,partly because of the lack of methodological uniformity.The^(15)N_(2)tracer assay(the original bubble method→the^(15)N_(2)-enriched seawater method→the modified bubble method)is the mainstream method for field measurements of N2 fixation rates(NFRs),among which the original bubble method is the most frequently used.However,accumulating evidence has suggested an underestimation of NFRs when using this method.To improve the availability of previous data,we compared NFRs measured by three^(15)N_(2)tracer assays in the South China Sea.Our results indicate that the relationship between NFRs measured by the original bubble method and the^(15)N_(2)-enriched seawater method varies obviously with area and season,which may be influenced by incubation time,diazotrophic composition,and environmental factors.In comparison,the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable,indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%.Based on this result,we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a).Our results improve the availability and comparability of literature NFR data in the South China Sea.The comparison of the^(15)N_(2)tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.
基金financed by the National Natural Science Foundation of China(41301345,41101284)。
文摘The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.
基金Supported by Jiangsu Sanxin Agricultural Innovation Project(SXGC[2014]188)~~
文摘The effects of different basic seedlings, N application rates and paclobutrazol measures on the development and yield of Tongyoujing 1 population were studied through the D-saturated optimum regression design tests. The results showed thatthe effects of various factors on yield under the experimental conditions were in order of N application rate basic seedlings paclobutrazol dosage. The increases of basic seedlings and N application rate are beneficial to the increases of population quantity and tiller density, and could improve number of panicles per unit area and increase the population leaf area and accumulated amount of dry matter.However, too-high basic seedlings and N application rate would reduce reproductive tiller percentage and economic coefficient, and prolong growth duration. Proper basic seedlings could coordinate the correlation between tiller density and productive tiller percentage, ensure higher leaf area and dry matter accumulation at filling stage,and improve yield of Tongyoujing 1. According to the multivariate nonlinear regression analysis of yield with various factors, Tongyoujing 1 could reach its maximum yield potential of 12 606.0 kg/hm2 under the basic seedlings of 55.2×104/hm2, N application rate at 339.2 kg/hm2, and paclobutrazol dosage of 97.9 g/hm2. The comprehensive agricultural measures for a yield higher than 11 250 kg/hm2were: basic seedlings 52.6 ×10^4-60.1 ×10^4/hm2, N application rate 328.0-356.1 kg/hm2, and paclobutrazol dosage 87.6-104.6 g/hm2.
文摘The growth period, population tiller dynamics, plant characters, paniclegrain structure, yielding ability and stress resistance of a wheat variety Heibaoshi 1 were studied using a two-factor split plot design to investigate the effects of different density and fertilizer levels on individual development and yield of Heibaoshi 1 in riparian region of Jiangsu Province. In addition, high-yielding agronomic measures were explored through multiple non-linear regression analysis. The results showed that low density was not conducive to the formation of panicles, while high density affected grain number per panicle; low fertilizer level restricted individual development, while high fertilizer level affected grain number per panicle and grain weight and was prone to leading to lodging. Reasonable combination of density and fertilizer could coordinate individual development and balance panicle, grain and weight, thus achieving a high yield. The yield potential was highest (7 384.3 kg/hm2) under density of 239.6×104 basic seedlings/hm2 and N level of 237.7 kg/hm2. When the planting density ranged from 200×104 to 270×104 basic seedlings/hm2 and the N level ranged from 220 to 260 kg/hm2 or the density basic seedling number ranged from 210×104/hm2 to 260×104/hm2 and the N level ranged from 210 to 270 kg/hm2, the yield could exceed 7 200 kg/hm2.
基金The National Natural Science Foundation of China (No. 30271068) the grant of the Knowledge Inno-vation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10) and the Special Funds for Major State Basic Research Pr
文摘The N2O emission rates, photosynthesis, respiration and stomatal conductance of the dominant tree species from broadleaf/Korean pine forest in Changbai Mountain were measured by simulated water stress with the closed bag-gas chromatography. A total of five species seedlings were involved in this study, i.e.,Pinus koraiensis Sieb. et Zucc,Fraxinus mandshurica Rupr,Juglans mandshurica Maxim,Tilia amurensis Rupr, andQuercus mongolica Fisch. ex Turcz.. The results showed that the stomatal conductance, net photosynthetic rate and N2O emission of leaves were significantly reduced under the water stress. The stoma in the leaves of trees is the main pathway of N2O emission. N2O emission in the trees mainly occurred during daytime. N2O emission rates were different in various tree specie seedlings at the same water status. In the same tree species, N2O emission rates decreased as the reduction of soil water contents. At different soil water contents (MW, LW) the N2O emission rates ofPinus koraiensis decreased by 34.43% and 100.6% of those in normal water condition, respectively. In broadleaf arbor decreased by 31.93% and 86.35%, respectively. Under different water stresses N2O emission rates in five tree species such asPinus koraiensis, Fraxinus mandshurica, Juglans mandshurica, Tilia amurensis, andQuercus mongolica were 38.22, 14.44, 33.02, 16.48 and 32.33 ngN2O·g?1DW·h?1, respectively. Keywords Trees - N2O emission rate - Soil water stress - broadleaf/Korean pine forest - Changbai Mountain CLC number S718.55 Document code A Foundation item: This project was supported by the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-10), and the Special Funds for Major State Basic Research Program of China (No. G1999043407)Biography: Wang Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
文摘Insufficient N supply is an important constraint to productivity of lowland rice. Studies on N nutrition of rice cultivars with different durations representing the north western part of Indo-Gangetic Plains are scanty. A field experiment was conducted during kharif seasons of 2006 and 2007 at PAU, Ludhiana to assess the differences in grain yield and N utilization of three popular rice cultivars at varying N doses. Significant differences among genotypes were observed in grain yield, N uptake, N use efficiency and N utilization efficiency. The cultivar PAU-201 was found to be superior among all the tested genotypes. Total N uptake and grain N uptake was highest in cultivar PAU-201 followed by cultivars PR-115 and PR-113. On an average, the response to applied N for grain yield was observed upto 90 kg N ha1. Grain yield increased significantly up to 90 kg N hal in cultivars PR-115 and PAU-201 and up to 120 kg N ha1 in PR-113. Apparent recovery efficiency (ARE) and Partial factor productivity (PFPN) of N was significantly reduced at higher level of N (150 kg N hal). It was concluded that N uptake is predominant factor in grain yield formation and cultivars differ in NUE suggesting that it may be possible to develop cultivars that are efficient at low nutrient level or are capable of using N more efficiently when applied as fertilizer.
基金the National Natural Science Foundation of China (Nos.40571077 and 30390080)and the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-413).
文摘Although nitrogen (N) loss through runoff and leaching from croplands is suspected to contribute to the deterioration of surrounding water systems, there is no conclusive evidence for paddy soils to prove this hypothesis. In this study, field plot experiments were conducted to investigate N losses through runoff and leaching for two consecutive years with 3 N fertilization rates in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) rotations in the Taihu Lake region, China. A water collection system was designed to collect runoff and leachates for both the rice and wheat seasons. Results showed that dissolved N (DN), rather than particulate N (PN), was the main form of N loss by runoff. The NO3^--N concentration in runoff was between 0.1 and 43.7 mg L^-1, whereas the NH4^+-N concentration ranged from below detection limit to 8.5 mg L^-1. Total N (TN) loads by runoff were 1.0-17.9 and 5.2-38.6 kg ha^-1 during rice and wheat seasons, respectively, and the main loss occurred at the early growing stage of the crops. Nitrogen concentrations in leachates during the rice seasons were below 1.0 mg L^-1 and independent of the N application rate, whereas those during the wheat season increased to 8.2 mg L^-1 and were affected by the fertilizer rate. Annual losses of TN through runoff and leaching were 13.7-48.1 kg ha^-1 from the rice-wheat cropping system, accounting for 5.6%-8.3% of the total applied N. It was concluded that reduction in the N fertilization rate, especially when the crop was small in biomass, could lower the N pollution potential for water systems.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-413-3)National Natural Science Foundation of China (No.30390080)National Basic Research Program of China (No.2005CB121108)
文摘Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390084 and 30270772)the Natural Science Foundation of Beijing (No. 6010001)
文摘Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.