The transfer mechanisms. calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways 0f nitrogen transf6r from legumes to neighbo...The transfer mechanisms. calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways 0f nitrogen transf6r from legumes to neighboring non-legumes: (1) the nitrogen pass in soluble form from the donor legume root into the soil solution, move by diffusion or/and mass flow to the receiver root and be taken up by the latter, (2) nitrogen pass into the soil solution as before, be taken up and transported by mycorrhizal hyphae attached to the receiver roots,(3) if mycorrhizal hyphae form connections (bridges) between the two root systems, the nitrogen could pass into the fungus within the donor root and be transported into the receiver root without ever being in the soil solution. The mechanisms of nitrogen transfer between N2-fixing plants and non-N2-fixing plants are reviewed in terms of indirect and direct pathways. The indirect N-transfer process is related to the release of nitrogen from legumes(donor plants), the possible interaction of this nitrogen with soil, the decomposition and mineralization of legumes and tumover of nitrogen, the nitrogen absorbing and competing abilities of the legume and the non-legume (receiver plant). The direCt nitrogen transfer process is generally considered to be related to the nitrogen gradient and physiological imbalance between legumes and non-legumes, and when the donor legume lies in stressful stage (i.e. removal of shoots or attacked by insects), the nitrogen transfer can be improved significantly. Themethods of deterrnining nitrogen transfer (lndirect 15N-isotope. dilution method and direct 15N determination method) are evaluated, and their advantages and shortcomings are shown in this review.展开更多
In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results ...In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results showed that strong phosphorescence could be observed in b-cyclodextrin aqueous solution only at low pH value. This system combined AND and NOT function to produce a three-input inhibit (INH) logic gate.展开更多
The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), M?ll...The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), M?ller-Plesset perturbation (MP2) and Hartree-Fock (HF) methods with the 6-31G* and 6-311G* basis sets. The barrier heights for both H2O-assisted and auto-assistance reactions are significantly lower than that of the bare tautomerization reaction from NHMF to N-Formyl Formamide (NFF), implying the importance of the superior catalytic effect of H2O in the monomer of NHMF and important role of HOCH= N-COH for the intramolecular proton transfer.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
In search of new systems with a photoexcited redox pair which exhibits a strong and stable photoinduced absorption band to understand the photophyscial and photochemical properties of electron transfer between fullere...In search of new systems with a photoexcited redox pair which exhibits a strong and stable photoinduced absorption band to understand the photophyscial and photochemical properties of electron transfer between fullerenes (C 60/C 70) and organic donor [N,N,N′,N′-tetra(p-methylphenyl)-4,4′-diamino-1,1′-diphenyl sulphide (TPDAS)], we studied characteristic absorption spectra in the near-IR region obtained from 532 nm nanosecond laser flash photolysis of a mixture of the fullerenes (C 60/C 70) and TPDAS in polar solvents. When fullerenes (C 60/C 70) were photoexcited, the rise of the radical anion of fullerenes (C 60/C 70) with the rapid decay of their excited triplet states were observed in benzonitrile. It can be deduced that the electron transfer reaction does take place from TPDAS to excited triplet state of fullerenes (C 60/C 70). The rate constants (k et) and quantum yields (Φ et) of this process have been also evaluated.展开更多
The transfer kinetics of phenol between aqueous phase and N,N di(methyl heptyl) acetaminde (N503) in kerosene has been studied using Lewis cell technique. The effects of the factors including the concentrations of p...The transfer kinetics of phenol between aqueous phase and N,N di(methyl heptyl) acetaminde (N503) in kerosene has been studied using Lewis cell technique. The effects of the factors including the concentrations of phenol in aqueous phase and organic phase, the concentration of N503 in organic phase, the acidity of aqueous phase, the stirring speed and the temperature on the rates of forward and backward extraction of phenol have been examined. The regularity of extraction rate has been obtained. According to experimental results, the rates of both forward and backward extraction of phenol might be controlled by diffusion process. The diffusion step of phenol from aqueous phase to interface for forward extraction and from interface to aqueous phase for backward extraction might be the rate controlling steps.展开更多
Strategic Water Transfer Project of Western China will transfer water from the Dadu river, the Yalong river, the Jinsha river, the Lancang river and the Nujiang river to the Daliushu project as head work of main canal...Strategic Water Transfer Project of Western China will transfer water from the Dadu river, the Yalong river, the Jinsha river, the Lancang river and the Nujiang river to the Daliushu project as head work of main canal on the Yellow river. And then,the water will be diverted to Neimongol and Xinjiang Uygur autonomous regions,with transfered annual volume of water 80 billion m\+3. The project possesses great comprehensive benefit. The construction of the project will not only change the appearance of the whole Northwest China, but also open up a wide way for the sustainable development of China in future.展开更多
A neutral N-amidothiourea-based excited state intramolecular proton transfer (ESIPT) anion receptor bearing an o-hydroxynaphthamide fluorophore and a thiourea binding site, N-(3-hydroxy-2-naphthamide)-N’-phenylthiour...A neutral N-amidothiourea-based excited state intramolecular proton transfer (ESIPT) anion receptor bearing an o-hydroxynaphthamide fluorophore and a thiourea binding site, N-(3-hydroxy-2-naphthamide)-N’-phenylthiourea (1a), was designed and synthesized. Fluorescence and absorption response of 1a toward anions were assessed in acetonitrile. IR and NMR experiments indicated that the "OH…O=C" intramolecular hydrogen bond (IHB) in 1a was weak so that it only exhibited the short-wavelength normal emission other than ESIPT fluorescence. Due to the high anion binding affinity of the N-amidothiourea binding site and the formation of a hydrogen binding network in the 1a-anion c omplex, 1a underwent structural change upon anion binding that strengthens the "OH…O=C" IHB, leading to the ESIPT and the observation of the long-wavelength ESIPT emission whereas the normal fluorescence is quenched. On the basis of NMR and fluorescence titrations and control experiments with model compounds, a sensing mechanism of the anion-binding-induced ESIPT was proposed.展开更多
Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization(ATRP) in a N,N-dimethylformamide-water mixture(50 vol%)at room temperature with methyl 2-chloropropinonate as init...Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization(ATRP) in a N,N-dimethylformamide-water mixture(50 vol%)at room temperature with methyl 2-chloropropinonate as initiator and CuCl/tris(2-dimethylaminoethyl)amine as the catalytic system in a ratio of 1:1:1.High molecular weight homopolymers(up to 3.7×10~4)with narrow molecular weight distribution(less than 1.2)were obtained.The living character of the polymerization was further demonstrated by self-blocking...展开更多
Introduction Microwave irradiation has been very widely used in heating, cooking and brewing. Several papers which describe the use of domestic microwave ovens to perform rapid organic synthesis in solution have been ...Introduction Microwave irradiation has been very widely used in heating, cooking and brewing. Several papers which describe the use of domestic microwave ovens to perform rapid organic synthesis in solution have been published. The high heating efficiency gives rise to remarkable rate of reaction and dramatic reduction of reaction time. Nevertheless, its application seems to be limited to these procedures because of展开更多
We report here an approach toward the synthesis of optically active polyacrylamide bearing amino acid moieties, poly[Nmethacryloyl L-leucine methyl ester] (PMALM), with controlled average number molecular weight (M...We report here an approach toward the synthesis of optically active polyacrylamide bearing amino acid moieties, poly[Nmethacryloyl L-leucine methyl ester] (PMALM), with controlled average number molecular weight (Mn) and relatively narrow polydispersity index (PDI, Mw/Mn 〈 1.3) by atom transfer radical polymerization (ATRP) using initiating system methyl 2-bromopropionate/CuBr/tris(2-dimethylaminoethyl) amine. The optical properties of the resulting polymers were evaluated from specific optical rotation value and CD spectra.展开更多
Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc. In this paper, three possib...Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc. In this paper, three possible reaction mechanisms are investigated and the results indicate that if the acetyl group directly transfers from the donor to the acceptor, the high activation energies will make it hard to obtain the target products. When using histidine to mediate the acetylation process, these energies will drop in the 15-45 kJ/mol range. If the histidine residue is protonated, the corresponding energies will be decreased by about 35-87 kJ/mol. The calculations predict an enzymatic acetylation mechanism that undergoes a thiolate-imidazolium pair, which agrees with the experimental results very well.展开更多
The photoinduced electron-transfer reaction of N,N,N′,N′-tetra-(p-methylphenyl)-4,4′-diamino-1,1′-diphenyl ether (TPDAE) and fullerenes (C 60/C 70) by nanosecond laser flash photolysis occurred in benzonitri...The photoinduced electron-transfer reaction of N,N,N′,N′-tetra-(p-methylphenyl)-4,4′-diamino-1,1′-diphenyl ether (TPDAE) and fullerenes (C 60/C 70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C 60/C 70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C 60/C 70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C 60/C 70) in benzonitrile have been evaluated by observing the transient absorption bands in the near-IR region where the excited triplet state, radical anion of fullerenes (C 60/C 70) and radical cations of TPDAE are expected to appear.展开更多
文摘The transfer mechanisms. calculating methods and ecological significance of nitrogen transfer between legumes and non-legumes are briefly reviewed. There are three pathways 0f nitrogen transf6r from legumes to neighboring non-legumes: (1) the nitrogen pass in soluble form from the donor legume root into the soil solution, move by diffusion or/and mass flow to the receiver root and be taken up by the latter, (2) nitrogen pass into the soil solution as before, be taken up and transported by mycorrhizal hyphae attached to the receiver roots,(3) if mycorrhizal hyphae form connections (bridges) between the two root systems, the nitrogen could pass into the fungus within the donor root and be transported into the receiver root without ever being in the soil solution. The mechanisms of nitrogen transfer between N2-fixing plants and non-N2-fixing plants are reviewed in terms of indirect and direct pathways. The indirect N-transfer process is related to the release of nitrogen from legumes(donor plants), the possible interaction of this nitrogen with soil, the decomposition and mineralization of legumes and tumover of nitrogen, the nitrogen absorbing and competing abilities of the legume and the non-legume (receiver plant). The direCt nitrogen transfer process is generally considered to be related to the nitrogen gradient and physiological imbalance between legumes and non-legumes, and when the donor legume lies in stressful stage (i.e. removal of shoots or attacked by insects), the nitrogen transfer can be improved significantly. Themethods of deterrnining nitrogen transfer (lndirect 15N-isotope. dilution method and direct 15N determination method) are evaluated, and their advantages and shortcomings are shown in this review.
文摘In this paper, photoinduced electron transfer(PET) phosphoroionophore, N-(1-bromo- 2-naphthylmethyl)-diethanolamine (BND) was synthesized and its phosphorescent characteristics were studied. The experimental results showed that strong phosphorescence could be observed in b-cyclodextrin aqueous solution only at low pH value. This system combined AND and NOT function to produce a three-input inhibit (INH) logic gate.
文摘The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), M?ller-Plesset perturbation (MP2) and Hartree-Fock (HF) methods with the 6-31G* and 6-311G* basis sets. The barrier heights for both H2O-assisted and auto-assistance reactions are significantly lower than that of the bare tautomerization reaction from NHMF to N-Formyl Formamide (NFF), implying the importance of the superior catalytic effect of H2O in the monomer of NHMF and important role of HOCH= N-COH for the intramolecular proton transfer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 0 0 710 12 ) ,ResearchFundfortheYoungTeacherPro gramofHigherEducationofChina (No .2 0 0 0 6 5 )andtheNaturalScienceFoundationofGuangdongProvince (No .0 0 0 70 0 )
文摘In search of new systems with a photoexcited redox pair which exhibits a strong and stable photoinduced absorption band to understand the photophyscial and photochemical properties of electron transfer between fullerenes (C 60/C 70) and organic donor [N,N,N′,N′-tetra(p-methylphenyl)-4,4′-diamino-1,1′-diphenyl sulphide (TPDAS)], we studied characteristic absorption spectra in the near-IR region obtained from 532 nm nanosecond laser flash photolysis of a mixture of the fullerenes (C 60/C 70) and TPDAS in polar solvents. When fullerenes (C 60/C 70) were photoexcited, the rise of the radical anion of fullerenes (C 60/C 70) with the rapid decay of their excited triplet states were observed in benzonitrile. It can be deduced that the electron transfer reaction does take place from TPDAS to excited triplet state of fullerenes (C 60/C 70). The rate constants (k et) and quantum yields (Φ et) of this process have been also evaluated.
文摘The transfer kinetics of phenol between aqueous phase and N,N di(methyl heptyl) acetaminde (N503) in kerosene has been studied using Lewis cell technique. The effects of the factors including the concentrations of phenol in aqueous phase and organic phase, the concentration of N503 in organic phase, the acidity of aqueous phase, the stirring speed and the temperature on the rates of forward and backward extraction of phenol have been examined. The regularity of extraction rate has been obtained. According to experimental results, the rates of both forward and backward extraction of phenol might be controlled by diffusion process. The diffusion step of phenol from aqueous phase to interface for forward extraction and from interface to aqueous phase for backward extraction might be the rate controlling steps.
文摘Strategic Water Transfer Project of Western China will transfer water from the Dadu river, the Yalong river, the Jinsha river, the Lancang river and the Nujiang river to the Daliushu project as head work of main canal on the Yellow river. And then,the water will be diverted to Neimongol and Xinjiang Uygur autonomous regions,with transfered annual volume of water 80 billion m\+3. The project possesses great comprehensive benefit. The construction of the project will not only change the appearance of the whole Northwest China, but also open up a wide way for the sustainable development of China in future.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20425518, 20675069 & 20835005)the National Fund for Fostering Talents of Basic Science (Grant No. J0630429)
文摘A neutral N-amidothiourea-based excited state intramolecular proton transfer (ESIPT) anion receptor bearing an o-hydroxynaphthamide fluorophore and a thiourea binding site, N-(3-hydroxy-2-naphthamide)-N’-phenylthiourea (1a), was designed and synthesized. Fluorescence and absorption response of 1a toward anions were assessed in acetonitrile. IR and NMR experiments indicated that the "OH…O=C" intramolecular hydrogen bond (IHB) in 1a was weak so that it only exhibited the short-wavelength normal emission other than ESIPT fluorescence. Due to the high anion binding affinity of the N-amidothiourea binding site and the formation of a hydrogen binding network in the 1a-anion c omplex, 1a underwent structural change upon anion binding that strengthens the "OH…O=C" IHB, leading to the ESIPT and the observation of the long-wavelength ESIPT emission whereas the normal fluorescence is quenched. On the basis of NMR and fluorescence titrations and control experiments with model compounds, a sensing mechanism of the anion-binding-induced ESIPT was proposed.
基金This work was supported by the National Natural Science Foundation of China through Young Investigator Award(No.20328407)Nankai University,and the Canada Research Chair program.
文摘Controlled polymerization of N-n-propylacrylamide was achieved by atom transfer radical polymerization(ATRP) in a N,N-dimethylformamide-water mixture(50 vol%)at room temperature with methyl 2-chloropropinonate as initiator and CuCl/tris(2-dimethylaminoethyl)amine as the catalytic system in a ratio of 1:1:1.High molecular weight homopolymers(up to 3.7×10~4)with narrow molecular weight distribution(less than 1.2)were obtained.The living character of the polymerization was further demonstrated by self-blocking...
文摘Introduction Microwave irradiation has been very widely used in heating, cooking and brewing. Several papers which describe the use of domestic microwave ovens to perform rapid organic synthesis in solution have been published. The high heating efficiency gives rise to remarkable rate of reaction and dramatic reduction of reaction time. Nevertheless, its application seems to be limited to these procedures because of
基金the National Natural Science Foundation of China (No. 20474068) the Natural Science Foundation of Guangdong Province (No. 021471) are gratefully acknowledged.
文摘We report here an approach toward the synthesis of optically active polyacrylamide bearing amino acid moieties, poly[Nmethacryloyl L-leucine methyl ester] (PMALM), with controlled average number molecular weight (Mn) and relatively narrow polydispersity index (PDI, Mw/Mn 〈 1.3) by atom transfer radical polymerization (ATRP) using initiating system methyl 2-bromopropionate/CuBr/tris(2-dimethylaminoethyl) amine. The optical properties of the resulting polymers were evaluated from specific optical rotation value and CD spectra.
基金the National Natural Scientific Foundation of China(No.20603030)the Youth Natural Science Foundation of Ludong University(No.042902)+1 种基金the Post-doctor Research Foundation of Shandong Province(No.200601007)the Youth Natural Science Foundation of Shandong Provincial Education Department(No.200139)
文摘Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc. In this paper, three possible reaction mechanisms are investigated and the results indicate that if the acetyl group directly transfers from the donor to the acceptor, the high activation energies will make it hard to obtain the target products. When using histidine to mediate the acetylation process, these energies will drop in the 15-45 kJ/mol range. If the histidine residue is protonated, the corresponding energies will be decreased by about 35-87 kJ/mol. The calculations predict an enzymatic acetylation mechanism that undergoes a thiolate-imidazolium pair, which agrees with the experimental results very well.
文摘The photoinduced electron-transfer reaction of N,N,N′,N′-tetra-(p-methylphenyl)-4,4′-diamino-1,1′-diphenyl ether (TPDAE) and fullerenes (C 60/C 70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C 60/C 70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C 60/C 70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C 60/C 70) in benzonitrile have been evaluated by observing the transient absorption bands in the near-IR region where the excited triplet state, radical anion of fullerenes (C 60/C 70) and radical cations of TPDAE are expected to appear.