Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh...Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.展开更多
文摘Base d on fluid velocity potential, an ALE finite element formulation for the analysi s of nonlinear sloshing problems has been developed. The ALE kinemat ical description is introduced to move the computational mesh independently of f luid motion, and the container fixed noninertial coordinate system is employed to establish the governing equations so that the mesh is needed to be updated in this coordinate system only. This leads to a very simple mesh moving algorithm which makes it easy to trace the motion of the moving boundaries and the free su rface without producing undesirable distortion of the computational mesh. The fi nite element method and finite difference method are used spacewise and timewise , respectively. A numerical example involving either forced horizontal oscillati on or forced pitching oscillation of the fluid filled container is presented to illustrate the effectiveness and the robustness of the method. In additi on, this work can be extended for the fluid structure interaction problems.