Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to dete...Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of展开更多
Using hybrid rice Shanyou63, the agronomic and economic characters of different nitrogen(N) managements were evaluated. The results showed that the grain yield of the control(N omission plots) ranged from 6.8 to 7.4 t...Using hybrid rice Shanyou63, the agronomic and economic characters of different nitrogen(N) managements were evaluated. The results showed that the grain yield of the control(N omission plots) ranged from 6.8 to 7.4 t ha-1, indicating the high indigenous N supplyof the soil. Compared with farmers fertilizer practice (FFP, 240 kg N ha-1), the modifiedFFP (70% N of FFP), real-time N management (RTNM, applying N based on values ofchlorophyll meter) and site-specific N management (SSNM, applying nitrogen based on thetiming, amount of N and values of chlorophyll meter) increased the grain yield by 9.2-10.3%, 3.3-7.0% and 8.9-9.3%, and agronomic N efficiency (the increase in grain yieldper unit N applied) by 110.5-135.6%, 204.3-297.0% and 200.9-276.4%, respectively. Theresults suggested that RTNM and SSNM have great potential for improving N use efficiencywithout sacrificing the grain yield. In addition, RTNM and SSNM also decreased chalkygrain percentage and chalkiness to improve grain appearance quality.展开更多
The application of nitrogen (N) fertilizers in agriculture has been increasing dramatically since 1970s. However, the over-fertilization causes could cause environmental problems, as well as low N use efficiency (...The application of nitrogen (N) fertilizers in agriculture has been increasing dramatically since 1970s. However, the over-fertilization causes could cause environmental problems, as well as low N use efficiency (NUE). Promoting NUE in plants and minimizing the environmental impacts of N fertilizers had been the focus of the current research. We reviewed the importance of N, N metabolism and plant growth, plant N physiology and the molecular aspect of N metabolism in this paper. The future development of N use and NUE of plants was also discussed.展开更多
Increasing nitrogen(N)rate could accelerate the decomposition of crop residues,and then improve crop yield by increasing N availability of soil and N uptake of crops.However,it is not clear whether N rate and plant de...Increasing nitrogen(N)rate could accelerate the decomposition of crop residues,and then improve crop yield by increasing N availability of soil and N uptake of crops.However,it is not clear whether N rate and plant density should be modified after a long period of cotton stubble return with high N rate.This study seeks to assess the effects of N rate and plant density on cotton yield,N use efficiency,leaf senescence,soil inorganic N,and apparent N balance in cotton stubble return fields in Liaocheng,China,in 2016 and 2017.Three plant densities 5.25(D_(5.25)),6.75(D_(6.75))and 8.25(D_(8.25))plants m^(-2) and five N rates 0(N_(0)),105(N_(105)),210(N_(210)),315(N315),and 420(N420)kg ha^(-1) were investigated.Compared to the combination used by local farmers(D_(5.25)N_(315)),a 33.3%N reduction and a 28.6%increase in plant density(D_(6.75)N_(210))can maintain high cotton yield,while a 66.7%N reduction at 6.75 plants m^(-2)(D_(6.75)N_(105))can only achieve high yield in the first year.Biological yield increased with the increase of N rate and plant density,and the highest yield was obtained under 420 kg N ha^(-1) at 8.25 plants m^(-2)(D_(8.25)N_(420))across the two years under investigation.Compared to D5.25N315,N agronomic efficiency(NAE)and N recovery efficiency(NRE)in D_(6.75)N_(210) increased by 30.2 and 54.1%,respectively,and NAE and NRE in D6.75N105 increased by 104.8 and 88.1%,respectively.Soil inorganic N decreased sharply under 105 kg N ha^(-1),but no change was found under 210 kg N ha^(-1) at 6.75 plants m^(-2).N deficit occurred under 105 kg N ha^(-1),but it did not occurr under 210 kg N ha^(-1) at 6.75 plants m^(-2).Net photosynthetic rate and N concentration of leaves under N rate ranging from 210 to 420 kg ha^(-1) were higher than those under N rate of 0 or 105 kg N ha^(-1) at all three densities.The findings suggest that D6.75N210 is a superior combination in cotton stubble retaining fields in the Yellow River Valley and other areas with similar ecologies.展开更多
Rational application of different forms of nitrogen(N) fertilizer for peanut(Arachis hypogaea L.) requires tracking the N supplied sources which are commonly not available in the differences among the three source...Rational application of different forms of nitrogen(N) fertilizer for peanut(Arachis hypogaea L.) requires tracking the N supplied sources which are commonly not available in the differences among the three sources:root nodule,soil and fertilizer.In this study,two kinds of peanut plants(nodulated variety(Huayu 22) and non-nodulated variety(NN-1)) were choosed and four kinds of N fertilizers:urea-N(CONH_2-N),ammonium-N(NH_4~+-N),nitrate-N(NO_3^--N) and NH_4~+ +NO_3^--N labeled by^(15)N isotope were applied in the field barrel experiment in Chengyang Experimental Station,Shandong Province,China,to determine the N supplied sources and N use efficiency over peanut growing stages.The results showed that intensities and amounts of N supply from the three sources were all higher at middle growing stages(pegging phase and podding phase).The accumulated amounts of N supply from root nodule,soil and fertilizer over the growing stages were 8.3,5.3 and 3.8g m^(-2) in CONH_2-N treatment,which are all significantly higher than in the other three treatments.At seedling phase,soil supplied the most N for peanut growth,then root nodule controlled the N supply at pegging phase and podding phase,but soil mainly provided N again at the last stage(pod filling phase).For the whole growing stages,root nodule supplied the most N(47.8 and 43.0%) in CONH_2-N and NH_4~+-N treatments,whereas soil supplied the most N(41.7 and 40.9%) in NH_4~+ +NO_3^--N and NO_3^--N treatments.The N use efficiency was higher at pegging phase and podding phase,while accumulated N use efficiency over the growing stages was higher in CONH_2-N treatment(42.2%) than in other three treatments(30.4%in NH_4~+-N treatment,29.4%in NO_3^--N treatment,29.4%in NH_4~+ +NO_3^--N treatment).In peanut growing field,application of CONH_2-N is a better way to increase the supply of N from root nodule and improve the N use efficiency.展开更多
In order to investigate effects of topdressing on grain yield and N use efficiency of mechanically-transplanted hybrid rice, this experiment was conducted with 2-line hybrid rice cultivars, Quaniiangyou 1 and Quanlian...In order to investigate effects of topdressing on grain yield and N use efficiency of mechanically-transplanted hybrid rice, this experiment was conducted with 2-line hybrid rice cultivars, Quaniiangyou 1 and Quanliangyou 681 with 3 application levels of N fertilizer, No, N1, N2, respectively. The results showed that there were no significant differences in grain yields of the 2 varieties between treatments N1 and N2. It was indicated that N is not the factor which could limit grain yield within limited application levels of N fertilizer. High N fertilizer treatment could contribute to the formation of effective panicles and spikelets per panicle, but it could also lead to the decline in grain filling rate. It was suggested that lowering the amount of Nfertilizer could facilitate improvement of N-use efficiency.展开更多
Poultry litter biochar is known to improve crop productivity.However,its beneficial interactions with chemical fertilizer and/or organic manure on rice yield and nitrogen(N)use efficiency(NUE)are not well studied.The ...Poultry litter biochar is known to improve crop productivity.However,its beneficial interactions with chemical fertilizer and/or organic manure on rice yield and nitrogen(N)use efficiency(NUE)are not well studied.The objective of this study was to co-apply poultry litter biochar(hereinafter biochar)and chemical fertilizer and/or Azolla as organic manure(herein N fertilizer sources)to improve the productivity of rice and NUE.Eight treatments-no amendments(control),chemical fertilizer(NPK),Azolla as green manure(Azolla),and NPK+Azolla without and with biochar amendment-were evalu-ated in a pot trial.Selected rice plant growth components,yield,and NUE were determined.Compared to the treatments without biochar,co-application of biochar and N fertilizer sources significantly improved grain N uptake by 23.9%and NUE by 34.3-246.9%.These treatments also significantly improved rice growth components(5.6-18.2%)and grain yield(32.4%).Significant changes in soil properties including increases in pH,electrical conductivity(EC),total N,organic car-bon,and available phosphorus were observed following biochar application.Except for the soil pH and EC parameters,no significant synergistic interactions between biochar and N fertilizer sources were observed for any parameters in the present study.Notably,compared to other treatments,the co-application of biochar and Azolla offers a feasible approach to improve rice productivity and NUE and reduce chemical fertilizer use,thereby reducing agricultural pollution and production costs.展开更多
The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were...The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were grown in severely Mo-deficient acidic soil (Tamm-reagent-extractable Mo 0.112 mg kg^-1) with (+Mo) and without (-Mo) the application of 0.13 mg kg^-1 Mo. The accumulation and use efficiency of plant total N were significantly higher in +Mo than that in -Mo and in eft than that in ineff under Mo deficiency. N use efficiency was remarkably higher in maturity but it was forwarded to jointing stage after Mo supply, thus indicating that Mo supply promoted the N use efficiency besides N uptake and eff was efficient in N uptake and utilization. The overall activity of nitrate reductase (NR, EC 1.6.6.1) was significantly higher in +Mo than in -Mo and ratio of +Mo/-Mo was even to 14.8 at filleting stage for ineff. Activity of glutamine synthetase (GS, EC 6.3.1.2) was significantly lower in +Mo than in -Mo. Concentration of nitrate and glutamate were also significantly lower in +Mo than in -Mo, thus provided evidences for enhancing N use efficiency by Mo supply. Activities of NR and GS were significantly higher and concentrations of nitrate and glutamate were significantly lower in eff than ineff under Mo deficiency, thus indicated eff was more efficient in N reduction and utilization. It is therefore concluded that Mo could promote N accumulation and utilization in winter wheat which was directly related to NR and feedback regulated by GS. Higher Mo status also results in higher accumulation and utilization of plant N in eft.展开更多
Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N 2O) and eutrophication of water bodies. How to solve this problem has...Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N 2O) and eutrophication of water bodies. How to solve this problem has become a serious challenge, especially for China as its high ecological pressure. Controlled-release fertilizer(CRF) has been developed to minimize the contamination while keeping high yield and has become a green fertilizer for agriculture. Several CRFs made with special coating technology were used for testing the fertilizer effects in yield and environment through pot experiment and field trial. The result indicated that the CRFs had higher N use efficiency, thus reducing N loss through leaching and volatilization while keeping higher yields. Comparing with imported standard CRFs, the test on CRFs showed similar fertilizer effect but with much lower cost. CRFs application is becoming a new approach for minimizing non-point contamination in agriculture.展开更多
Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maiz...Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency(NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index(LAI), intercepted photosynthetically active radiation(IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958(ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation(DMA), grain yield, NUE, and radiation use efficiency(RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK(320 kg ha^(–1)) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m^(–2), compared to LD(5.25 plants m^(–2)), would lead to an optimal balance between yield and resource use efficiency.展开更多
The effects of yield increase and mechanism of site-specific nitrogen management (SSNM) in five rice varieties from cold areas of northeastern China were studied. Plot experiment for critical SPAD value and experime...The effects of yield increase and mechanism of site-specific nitrogen management (SSNM) in five rice varieties from cold areas of northeastern China were studied. Plot experiment for critical SPAD value and experiments of two fertilization methods, SSNM and farmer's fertilization practice (FFP) were conducted to study their effects on the quality and dry matter accumulation of rice population, as well as N uptake. Compared with FFP, SSNM significantly decreased the average N rate by 33.8%, significantly increased average ear-bearing tiller rate and LAI for grain-filling stage by 12.3% and 14.1-27.6%, correspondingly, improved dry matter weight and N uptake after heading period by 4.3-29.1% and 11.8-55.1% (P 〈 0.05), and heightened recovery efficiency and agronomic efficiency by 38.5-133.4% (P 〈 0.05) and 39.8-194.3% (P 〈 0.05), respectively, as well as increased the average yield by 9.8% in 2004 and 2005. The results indicated that the accumulation rate of dry matter and N increased the rice yield and N use efficiency, because of improving rice population quality and increasing LAI after heading period.展开更多
In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, field experiments were conducted in Huaiji County of Guangdong Province,...In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, field experiments were conducted in Huaiji County of Guangdong Province, Binyang of Guangxi Zhuang Autonomous Region and Changsha City of Hunan Province, southern China in 2011 and 2012. Two hybrid (Liangyoupeijiu and Y-liangyou 1) and two inbred rice cultivars (Yuxiangyouzhan and Huanghuazhan) were grown under three N treatments (N1,225 kg ha-l; N2, 112.5-176 kg ha-l; N3, 0 kg ha-1) in each location. Results showed that grain yield was higher in Changsha than in Huaiji and Binyang for both hybrid and inbred cultivars. The higher grain yield in Changsha was attribut- ed to larger panicle size (spikelets per panicle) and higher biomass production. Consistently higher grain yield in hybrid than in inbred cultivars was observed in Changsha but not in Huaiji and Binyang. Higher grain weight and higher biomass production were responsible for the higher grain yield in hybrid than in inbred cultivars in Changsha. The better crop perfor- mance of rice (especially hybrid cultivars) in Changsha was associated with its temperature conditions and indigenous soil N. N2 had higher internal N use efficiency, recovery efficiency of applied N, agronomic N use efficiency, and partial factor productivity of applied N than N1 for both hybrid and inbred cultivars, while the difference in grain yield between N1 and N2 was relatively small. Our study suggests that whether hybrid rice can outyield inbred rice to some extent depends on the ecological conditions, and N use efficiency can be increased by using improved nitrogen management such as site-specific N management in both hybrid and inbred rice production.展开更多
Annual ryegrass(Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little...Annual ryegrass(Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little is known about its effects on rice grain yield and rice N use efficiency. In this study, effects of ryegrass on double rice yield, N uptake and use efficiency were measured under different fertilizer N rates. A 3-year(2009–2011) field experiment arranged in a split-plot design was undertaken. Main plots were ryegrass(RG) as a winter cover crop and winter fallow(WF) without weed. Subplots were three N treatments for each rice season: 0(N_0), 100(N_(100)) and 200 kg N ha–1(N_(200)). In the 3-year experiment, RG reduced grain yield and plant N uptake for early rice(0.4–1.7 t ha–1 for grain yield and 4.6–20.3 kg ha–1 for N uptake) and double rice(0.6–2.0 t ha–1 for grain yield and 6.3–27.0 kg ha–1 for N uptake) when compared with WF among different N rates. Yield and N uptake decrease due to RG was smaller in N_(100) and N_(200) plots than in N_0 plots. The reduction in early rice grain yield in RG plots was associated with decrease number of panicles. Agronomic N use efficiency and fertilizer N recovery efficiency were higher in RG plots than winter fallow for early rice and double rice among different N rates and experimental years. RG tended to have little effect on grain yield, N uptake, agronomic N use efficiency, and fertilizer N recovery efficiency in the late rice season. These results suggest that ryegrass may reduce grain yield while it improves rice N use efficiency in a double rice cropping system.展开更多
[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a sup...[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize.展开更多
[Objective] The aim was to research effects of N fertilizer reduction and application of N fertilizer (as base fertilizer) on rapeseed yield and N absorption. [Method] Based on Ganyouza No.5, the ratio of N, P2O5 an...[Objective] The aim was to research effects of N fertilizer reduction and application of N fertilizer (as base fertilizer) on rapeseed yield and N absorption. [Method] Based on Ganyouza No.5, the ratio of N, P2O5 andK2O was set at 1:0.5:0.5; N fertilizers were set involving reduced quantity at 150 kg/hm2 and preferred quantity at 180 kg/hm2; 100%, 80% and 60% of N fertilizers were applied as base fertilizers in the test respectively. In general, field tests were conducted to explore effects of reduced N fertilizer and application of N fertilizer as base fertilizer on rapeseed yield and N absorption. [Resalt] When applied N fertilizer as base fertilizer was the same, plant height, stem diameter, length of major inflorescence, number of effective branch, pod number per plant, seed number per pod, and biomass yield in group with preferred N quantity were significantly higher than those in group with reduced N fertilizer. Rapeseed yield and profits in group with preferred N quantity were signifi- cantly higher than those in group with reduced N fertilizer in field with moderate fertili- ty. In fields with higher fertility, however, the two factors were just a little higher. In group with reduced N fertilizer, use efficiency of N fertilizer, N uptake efficiency, par- tial factor productivity and harvest index of N were all significantly higher than those in group with preferred N fertilizer. Agronomic nitrogen use efficiency in group with preferred N fertilizer was significantly higher than that in group with reduced N fertiliz- er in field with moderate fertility and was significantly lower in field with high yield. With amounts of N, P and K fertilizers fixed, economic characters, yield constitution, yield, profits and N absorption in group, where 60% of N fertilizers were applied as base fertilizer, were significantly higher than those in groups with 80% or 100% of base fertilizer (N fertilizers). These indicated that rational fertilization would maintain rapeseed yield high and reduce N input to improve use efficiency of N fertilizer. On the other hand, it is effective to improve rapeseed yield.'to reduce N fertilizer to 150 kg/hm2, and application of 60%. of N fertilizers as base fertilizer is still proved optimal at present. [Conclusion] The research provides.theoretioal and technical references for improvement of yield of rapeseed and efficiency of N fertilizer.展开更多
In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N ...In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N management on the productivity of irrigated rice cultivars.In the context,a field observation was done at the research farm of Bangladesh Agricultural University,Mymensingh,during dry seasons in consecutive two years(2018–2019 and 2019–2020).The experiments were set up following split-plot design assigning water management in the main plots,nitrogen management in the sub-plots,and the cultivars were approved in the split-split plot with three replications.After two years observation,it was revealed that rice cultivar Binadhan-8 gave the maximum value of leaf area index,number effective tillers hill-1 and grains panicle-1 which lead to the higher grain yield(GY).Substantial relationships were observed among the concentration of N,growth,total dry matter(TDM)and N content,N uptake,N utilization effectiveness,and GY.However,with little exception,the Combined effect of water and N,cultivars and water management were varied significantly for all parameters.Finally,the results of the current study concluded that application of irrigation at 8 days after the disappearance of ponded water and source of 105 kg N ha-1 from PU+Poultry manure are the best management approach for the excellent performance of rice cultivar Binadhan-8.展开更多
Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil orga...Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil organic carbon(SOC) and soil N in abandoned, wheat(Triticum aestivum L.) non-fertilized, wheat fertilized(mineral fertilizer and organic manure) and alfalfa(Medicago Sativa L.) non-fertilized treatments in a semi-arid region of the Loess Plateau, China. Our results showed that SOC and soil total N contents in the 0–20 cm soil layer increased by 4.29(24.4%) and 1.39 Mg/hm2(100%), respectively, after the conversion of farmland to alfalfa land. Compared to the wheat non-fertilized treatment, SOC and soil total N contents in the 0–20 cm soil layer increased by 4.64(26.4%) and 1.18 Mg/hm2(85.5%), respectively, in the wheat fertilized treatment. In addition, we found that the extents of changes in SOC, soil total N and mineral N depended on soil depth were greater in the upper soil layer(0–30 cm) than in the deeper soil layer(30–100 cm) in the alfalfa land or fertilizer-applied wheat land. Fertilizer applied to winter wheat could increase the accumulation rates of SOC and soil total N. SOC concentration had a significant positive correlation with soil total N concentration. Therefore, this study suggested that farmland management, e.g. the conversion of farmland to alfalfa forage land and fertilizer application, could promote the sequestrations of C and N in soils in semi-arid regions.展开更多
The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil,prevent environmental pollution,and move toward green agr...The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil,prevent environmental pollution,and move toward green agriculture.The main objectives of this study were to assess the impacts of CRU’s full application on maize production and to clarify the connection between the nutrient release pattern of CRU and maize nutrient uptake.In order to learn more about the effects of CRU application on maize yields,N uptake,mineral N (N_(min)) dynamics,N balance in soil-crop systems,and economic returns,a series of field experiments were carried out in 2018–2020 in Dalian City,Liaoning Province,China.There were 4 different treatments in the experiments:no N fertilizer input (control,CK);application of common urea at 210 kg ha^(-1)(U),the ideal fertilization management level for the study site;application of polyurethane-coated urea at the same N input rate as U (PCU);and application of PCU at a 20% reduction in N input rate (0.8PCU).Our findings showed that using CRU (i.e.,PCU and 0.8 PCU) may considerably increase maize N absorption,maintain maize yields,and increase N use efficiency (NUE) compared to U.The grain yield showed considerable positive correlations with total N uptake in leaf in U and 0.8 PCU,but negative correlations with that in PCU,indicating that PCU caused excessive maize absorption while 0.8 PCU could achieve a better yield response to N supply.Besides,PCU was able to maintain N fertilizer in the soil profile 0–20 cm away from the fertilization point,and higher N_(min)content was observed in the 0–20 cm soil layer at various growth stages,particularly at the middle and late growing stages,optimizing the temporal and spatial distributions of N_(min).Additionally,compared to that in U,the apparent N loss rate in PCU was reduced by 36.2%,and applying CRU (PCU and 0.8 PCU) increased net profit by 8.5% to 15.2% with less labor and fertilization frequency.It was concluded that using CRU could be an effective N fertilizer management strategy to sustain maize production,improve NUE,and increase economic returns while minimizing environmental risks.展开更多
Combining nitrification inhibitor and urea can improve crop yield and nitrogen(N)use efficiency(NUE).However,the inhibitor easily gets inactivated in soil,making it difficult to achieve the desired effect.To develop a...Combining nitrification inhibitor and urea can improve crop yield and nitrogen(N)use efficiency(NUE).However,the inhibitor easily gets inactivated in soil,making it difficult to achieve the desired effect.To develop a synergistic urea for increasing the inhibitor action time,soil N supply,and wheat growth,dicyandiamide(DCD)was coated after granulation with epoxy resin and then mixed with urea to develop new resin-coated DCD(RCD)synergistic urea.Scanning electron microscopy(SEM)and hydrostatic release tests were used to evaluate the membrane microstructure and the controlled-release performance of RCD.Five fertilization treatments were set up in the field:zero-N control(CK),urea(U),urea+common DCD particles(SUD1),urea+RCD(SUD2),and urea+both common DCD particles and RCD(3:7,weight/weight)(SUD3)to investigate the effects of the DCD synergistic urea on wheat growth,yield,and NUE and soil available N content.The SEM results showed that RCD had a complete coating,smooth surface,and small and rugged channels for DCD release in the profile.The hydrostatic release test at 25?C showed that the release period of DCD was extended to ten days due to resin coating.In the three DCD synergistic urea treatments,only SUD3 resulted in a significant increase in wheat yield(18.47%)compared with U.The NUE in SUD3 was significantly higher than those in SUD2,U,and SUD1.The treatment SUD3 had higher soil available N content than the other treatments during the key wheat growth stages,while effectively reducing the risk of soil nitrate leaching during wheat maturity.In summary,SUD3,a mixture of urea,DCD particles,and RCD,was the best treatment for significantly increasing wheat growth,yield,and NUE and soil N supply.展开更多
High rates of fertilizer nitrogen (N) are applied in greenhouse vegetable fields in southeastern China to maximize production;however,the N budgets of such intensive vegetable production remain to be explored.The goal...High rates of fertilizer nitrogen (N) are applied in greenhouse vegetable fields in southeastern China to maximize production;however,the N budgets of such intensive vegetable production remain to be explored.The goal of this study was to determine the annual N balance and loss in a greenhouse vegetable system of annual rotation of tomato,cucumber,and celery at five N (urea) application rates (0,348,522,696,and 870 kg N ha-1 year-1).Total N input to the 0-50 cm soil layer ranged from 531 to 1 053 kg ha-1,and N fertilizer was the main N source,accounting for 66%-83% of the total annual N input.In comparison,irrigation water,wet deposition,and seeds in total accounted for less than 1% of the total N input.The fertilizer N use efficiency was only 18% under the conventional application rate of 870 kg N ha-1 and decreased as the application rate increased from 522 to 870 kg N ha-1.Apparent N losses were 196-201 kg N ha-1,of which 71%-86% was lost by leaching at the application rates of 522-870 kg N ha-1.Thus,leaching was the primary N loss pathway at high N application rates and the amount of N leached was proportional to the N applied during the cucumber season.Moreover,dissolved organic N accounted for 10% of the leached N,whereas NH3 volatilization only contributed 0.1%-0.6% of the apparent N losses under the five N application rates in this greenhouse vegetable system.展开更多
基金supported by the National Key Technology R&D Program (2011BAD12B03)
文摘Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of
基金the National Natural Science Foundation of China(30210103901)Key Techno1ogies R&D Programme(2001BA507A-09-01-03)and 1ife science group of Yangzhou University.
文摘Using hybrid rice Shanyou63, the agronomic and economic characters of different nitrogen(N) managements were evaluated. The results showed that the grain yield of the control(N omission plots) ranged from 6.8 to 7.4 t ha-1, indicating the high indigenous N supplyof the soil. Compared with farmers fertilizer practice (FFP, 240 kg N ha-1), the modifiedFFP (70% N of FFP), real-time N management (RTNM, applying N based on values ofchlorophyll meter) and site-specific N management (SSNM, applying nitrogen based on thetiming, amount of N and values of chlorophyll meter) increased the grain yield by 9.2-10.3%, 3.3-7.0% and 8.9-9.3%, and agronomic N efficiency (the increase in grain yieldper unit N applied) by 110.5-135.6%, 204.3-297.0% and 200.9-276.4%, respectively. Theresults suggested that RTNM and SSNM have great potential for improving N use efficiencywithout sacrificing the grain yield. In addition, RTNM and SSNM also decreased chalkygrain percentage and chalkiness to improve grain appearance quality.
基金Supported by the National Natural Science Foundation of China(3127219131372091)the Natural Science Foundation of Heilongjiang Province(C200619)
文摘The application of nitrogen (N) fertilizers in agriculture has been increasing dramatically since 1970s. However, the over-fertilization causes could cause environmental problems, as well as low N use efficiency (NUE). Promoting NUE in plants and minimizing the environmental impacts of N fertilizers had been the focus of the current research. We reviewed the importance of N, N metabolism and plant growth, plant N physiology and the molecular aspect of N metabolism in this paper. The future development of N use and NUE of plants was also discussed.
基金The study was supported by the National Natural Science Foundation of China(31601253)the Natural Science Foundation of Shandong Province,China(ZR2016CQ20)+1 种基金the China Postdoctoral Science Foundation(2017M610438)the Modern Agro-industry Technology Research System of Shandong Province,China(SDAIT-03-03/05).
文摘Increasing nitrogen(N)rate could accelerate the decomposition of crop residues,and then improve crop yield by increasing N availability of soil and N uptake of crops.However,it is not clear whether N rate and plant density should be modified after a long period of cotton stubble return with high N rate.This study seeks to assess the effects of N rate and plant density on cotton yield,N use efficiency,leaf senescence,soil inorganic N,and apparent N balance in cotton stubble return fields in Liaocheng,China,in 2016 and 2017.Three plant densities 5.25(D_(5.25)),6.75(D_(6.75))and 8.25(D_(8.25))plants m^(-2) and five N rates 0(N_(0)),105(N_(105)),210(N_(210)),315(N315),and 420(N420)kg ha^(-1) were investigated.Compared to the combination used by local farmers(D_(5.25)N_(315)),a 33.3%N reduction and a 28.6%increase in plant density(D_(6.75)N_(210))can maintain high cotton yield,while a 66.7%N reduction at 6.75 plants m^(-2)(D_(6.75)N_(105))can only achieve high yield in the first year.Biological yield increased with the increase of N rate and plant density,and the highest yield was obtained under 420 kg N ha^(-1) at 8.25 plants m^(-2)(D_(8.25)N_(420))across the two years under investigation.Compared to D5.25N315,N agronomic efficiency(NAE)and N recovery efficiency(NRE)in D_(6.75)N_(210) increased by 30.2 and 54.1%,respectively,and NAE and NRE in D6.75N105 increased by 104.8 and 88.1%,respectively.Soil inorganic N decreased sharply under 105 kg N ha^(-1),but no change was found under 210 kg N ha^(-1) at 6.75 plants m^(-2).N deficit occurred under 105 kg N ha^(-1),but it did not occurr under 210 kg N ha^(-1) at 6.75 plants m^(-2).Net photosynthetic rate and N concentration of leaves under N rate ranging from 210 to 420 kg ha^(-1) were higher than those under N rate of 0 or 105 kg N ha^(-1) at all three densities.The findings suggest that D6.75N210 is a superior combination in cotton stubble retaining fields in the Yellow River Valley and other areas with similar ecologies.
基金supported by the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences, China(2014QNM27)the Applying Basic Research Project of Qingdao,Shandong Province,China(14-2-4-90-jch)+3 种基金the Modern Agricultural Industry Technology System,China (SDAIT-05-021-04)the National Key Technology R&D Program of China(2014BAD11B04)the Key Innovation of Science and Technology Project of Shandong Academy of Agricultural Sciences,China(2014CXZ06-22014CXZ11-2)
文摘Rational application of different forms of nitrogen(N) fertilizer for peanut(Arachis hypogaea L.) requires tracking the N supplied sources which are commonly not available in the differences among the three sources:root nodule,soil and fertilizer.In this study,two kinds of peanut plants(nodulated variety(Huayu 22) and non-nodulated variety(NN-1)) were choosed and four kinds of N fertilizers:urea-N(CONH_2-N),ammonium-N(NH_4~+-N),nitrate-N(NO_3^--N) and NH_4~+ +NO_3^--N labeled by^(15)N isotope were applied in the field barrel experiment in Chengyang Experimental Station,Shandong Province,China,to determine the N supplied sources and N use efficiency over peanut growing stages.The results showed that intensities and amounts of N supply from the three sources were all higher at middle growing stages(pegging phase and podding phase).The accumulated amounts of N supply from root nodule,soil and fertilizer over the growing stages were 8.3,5.3 and 3.8g m^(-2) in CONH_2-N treatment,which are all significantly higher than in the other three treatments.At seedling phase,soil supplied the most N for peanut growth,then root nodule controlled the N supply at pegging phase and podding phase,but soil mainly provided N again at the last stage(pod filling phase).For the whole growing stages,root nodule supplied the most N(47.8 and 43.0%) in CONH_2-N and NH_4~+-N treatments,whereas soil supplied the most N(41.7 and 40.9%) in NH_4~+ +NO_3^--N and NO_3^--N treatments.The N use efficiency was higher at pegging phase and podding phase,while accumulated N use efficiency over the growing stages was higher in CONH_2-N treatment(42.2%) than in other three treatments(30.4%in NH_4~+-N treatment,29.4%in NO_3^--N treatment,29.4%in NH_4~+ +NO_3^--N treatment).In peanut growing field,application of CONH_2-N is a better way to increase the supply of N from root nodule and improve the N use efficiency.
基金Supported by National Key R&D Program(2016YFD030010)National Innovation Experiment Program for University students(20150083,2016099)
文摘In order to investigate effects of topdressing on grain yield and N use efficiency of mechanically-transplanted hybrid rice, this experiment was conducted with 2-line hybrid rice cultivars, Quaniiangyou 1 and Quanliangyou 681 with 3 application levels of N fertilizer, No, N1, N2, respectively. The results showed that there were no significant differences in grain yields of the 2 varieties between treatments N1 and N2. It was indicated that N is not the factor which could limit grain yield within limited application levels of N fertilizer. High N fertilizer treatment could contribute to the formation of effective panicles and spikelets per panicle, but it could also lead to the decline in grain filling rate. It was suggested that lowering the amount of Nfertilizer could facilitate improvement of N-use efficiency.
基金This research was in part funded by the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research Grant Number(B)26310304.
文摘Poultry litter biochar is known to improve crop productivity.However,its beneficial interactions with chemical fertilizer and/or organic manure on rice yield and nitrogen(N)use efficiency(NUE)are not well studied.The objective of this study was to co-apply poultry litter biochar(hereinafter biochar)and chemical fertilizer and/or Azolla as organic manure(herein N fertilizer sources)to improve the productivity of rice and NUE.Eight treatments-no amendments(control),chemical fertilizer(NPK),Azolla as green manure(Azolla),and NPK+Azolla without and with biochar amendment-were evalu-ated in a pot trial.Selected rice plant growth components,yield,and NUE were determined.Compared to the treatments without biochar,co-application of biochar and N fertilizer sources significantly improved grain N uptake by 23.9%and NUE by 34.3-246.9%.These treatments also significantly improved rice growth components(5.6-18.2%)and grain yield(32.4%).Significant changes in soil properties including increases in pH,electrical conductivity(EC),total N,organic car-bon,and available phosphorus were observed following biochar application.Except for the soil pH and EC parameters,no significant synergistic interactions between biochar and N fertilizer sources were observed for any parameters in the present study.Notably,compared to other treatments,the co-application of biochar and Azolla offers a feasible approach to improve rice productivity and NUE and reduce chemical fertilizer use,thereby reducing agricultural pollution and production costs.
基金Financial supports by the National Natural Science Foun-dation of China (30070431)the Key Technologies R&D Program of China during the 9th Five-Year Plan period(95-Agric-18-04)+1 种基金the Doctoral Fund of Ministry of Edu-cation of China (200805041061)the Earmarked Fund for Modern Agro-Industry Technology Research System, China
文摘The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were grown in severely Mo-deficient acidic soil (Tamm-reagent-extractable Mo 0.112 mg kg^-1) with (+Mo) and without (-Mo) the application of 0.13 mg kg^-1 Mo. The accumulation and use efficiency of plant total N were significantly higher in +Mo than that in -Mo and in eft than that in ineff under Mo deficiency. N use efficiency was remarkably higher in maturity but it was forwarded to jointing stage after Mo supply, thus indicating that Mo supply promoted the N use efficiency besides N uptake and eff was efficient in N uptake and utilization. The overall activity of nitrate reductase (NR, EC 1.6.6.1) was significantly higher in +Mo than in -Mo and ratio of +Mo/-Mo was even to 14.8 at filleting stage for ineff. Activity of glutamine synthetase (GS, EC 6.3.1.2) was significantly lower in +Mo than in -Mo. Concentration of nitrate and glutamate were also significantly lower in +Mo than in -Mo, thus provided evidences for enhancing N use efficiency by Mo supply. Activities of NR and GS were significantly higher and concentrations of nitrate and glutamate were significantly lower in eff than ineff under Mo deficiency, thus indicated eff was more efficient in N reduction and utilization. It is therefore concluded that Mo could promote N accumulation and utilization in winter wheat which was directly related to NR and feedback regulated by GS. Higher Mo status also results in higher accumulation and utilization of plant N in eft.
文摘Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N 2O) and eutrophication of water bodies. How to solve this problem has become a serious challenge, especially for China as its high ecological pressure. Controlled-release fertilizer(CRF) has been developed to minimize the contamination while keeping high yield and has become a green fertilizer for agriculture. Several CRFs made with special coating technology were used for testing the fertilizer effects in yield and environment through pot experiment and field trial. The result indicated that the CRFs had higher N use efficiency, thus reducing N loss through leaching and volatilization while keeping higher yields. Comparing with imported standard CRFs, the test on CRFs showed similar fertilizer effect but with much lower cost. CRFs application is becoming a new approach for minimizing non-point contamination in agriculture.
基金the National Natural Science Foundation of China(3117 1497)the National Basic Research Program of China(973 Program,2011CB100105)+1 种基金the National Food Science and Technology of High Yield Program of China(2011BAD16B09)the Special Fund for Agro-scientific Research in the Public Interest of China(201203096)
文摘Planting at an optimum density and supplying adequate nitrogen(N) to achieve higher yields is a common practice in crop production, especially for maize(Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency(NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index(LAI), intercepted photosynthetically active radiation(IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958(ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation(DMA), grain yield, NUE, and radiation use efficiency(RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK(320 kg ha^(–1)) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m^(–2), compared to LD(5.25 plants m^(–2)), would lead to an optimal balance between yield and resource use efficiency.
文摘The effects of yield increase and mechanism of site-specific nitrogen management (SSNM) in five rice varieties from cold areas of northeastern China were studied. Plot experiment for critical SPAD value and experiments of two fertilization methods, SSNM and farmer's fertilization practice (FFP) were conducted to study their effects on the quality and dry matter accumulation of rice population, as well as N uptake. Compared with FFP, SSNM significantly decreased the average N rate by 33.8%, significantly increased average ear-bearing tiller rate and LAI for grain-filling stage by 12.3% and 14.1-27.6%, correspondingly, improved dry matter weight and N uptake after heading period by 4.3-29.1% and 11.8-55.1% (P 〈 0.05), and heightened recovery efficiency and agronomic efficiency by 38.5-133.4% (P 〈 0.05) and 39.8-194.3% (P 〈 0.05), respectively, as well as increased the average yield by 9.8% in 2004 and 2005. The results indicated that the accumulation rate of dry matter and N increased the rice yield and N use efficiency, because of improving rice population quality and increasing LAI after heading period.
基金supported by the Earmarked Fund for Modern Agro-Industry Technology of China (CARS-01-34)
文摘In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, field experiments were conducted in Huaiji County of Guangdong Province, Binyang of Guangxi Zhuang Autonomous Region and Changsha City of Hunan Province, southern China in 2011 and 2012. Two hybrid (Liangyoupeijiu and Y-liangyou 1) and two inbred rice cultivars (Yuxiangyouzhan and Huanghuazhan) were grown under three N treatments (N1,225 kg ha-l; N2, 112.5-176 kg ha-l; N3, 0 kg ha-1) in each location. Results showed that grain yield was higher in Changsha than in Huaiji and Binyang for both hybrid and inbred cultivars. The higher grain yield in Changsha was attribut- ed to larger panicle size (spikelets per panicle) and higher biomass production. Consistently higher grain yield in hybrid than in inbred cultivars was observed in Changsha but not in Huaiji and Binyang. Higher grain weight and higher biomass production were responsible for the higher grain yield in hybrid than in inbred cultivars in Changsha. The better crop perfor- mance of rice (especially hybrid cultivars) in Changsha was associated with its temperature conditions and indigenous soil N. N2 had higher internal N use efficiency, recovery efficiency of applied N, agronomic N use efficiency, and partial factor productivity of applied N than N1 for both hybrid and inbred cultivars, while the difference in grain yield between N1 and N2 was relatively small. Our study suggests that whether hybrid rice can outyield inbred rice to some extent depends on the ecological conditions, and N use efficiency can be increased by using improved nitrogen management such as site-specific N management in both hybrid and inbred rice production.
基金supported by the National Natural Science Foundation of China(31501274,31171509,30671222,31270488)the Special Fund for Agro-scientific Research in the Public Interest,China(201103001)the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD16B15)
文摘Annual ryegrass(Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little is known about its effects on rice grain yield and rice N use efficiency. In this study, effects of ryegrass on double rice yield, N uptake and use efficiency were measured under different fertilizer N rates. A 3-year(2009–2011) field experiment arranged in a split-plot design was undertaken. Main plots were ryegrass(RG) as a winter cover crop and winter fallow(WF) without weed. Subplots were three N treatments for each rice season: 0(N_0), 100(N_(100)) and 200 kg N ha–1(N_(200)). In the 3-year experiment, RG reduced grain yield and plant N uptake for early rice(0.4–1.7 t ha–1 for grain yield and 4.6–20.3 kg ha–1 for N uptake) and double rice(0.6–2.0 t ha–1 for grain yield and 6.3–27.0 kg ha–1 for N uptake) when compared with WF among different N rates. Yield and N uptake decrease due to RG was smaller in N_(100) and N_(200) plots than in N_0 plots. The reduction in early rice grain yield in RG plots was associated with decrease number of panicles. Agronomic N use efficiency and fertilizer N recovery efficiency were higher in RG plots than winter fallow for early rice and double rice among different N rates and experimental years. RG tended to have little effect on grain yield, N uptake, agronomic N use efficiency, and fertilizer N recovery efficiency in the late rice season. These results suggest that ryegrass may reduce grain yield while it improves rice N use efficiency in a double rice cropping system.
基金Crop Harvest Technology and Engineering in the Twelfth Five-year Plan (2011BAD16B15-2)Special Foundation of National Modern Maize Industrial Technology System(nycytx-02-17)Cooperation Project of China-International Plant Nutrition Research Institute (NMBF-HenanAU-2009)~~
文摘[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize.
基金Supported by China Modern Agriculture Research System (CARS-13)Jiangxi Technological Innovation Team (20115BCB29020)Innovation Funds of Jiangxi Academy of Agricultural Sciences (2011CJJ012)~~
文摘[Objective] The aim was to research effects of N fertilizer reduction and application of N fertilizer (as base fertilizer) on rapeseed yield and N absorption. [Method] Based on Ganyouza No.5, the ratio of N, P2O5 andK2O was set at 1:0.5:0.5; N fertilizers were set involving reduced quantity at 150 kg/hm2 and preferred quantity at 180 kg/hm2; 100%, 80% and 60% of N fertilizers were applied as base fertilizers in the test respectively. In general, field tests were conducted to explore effects of reduced N fertilizer and application of N fertilizer as base fertilizer on rapeseed yield and N absorption. [Resalt] When applied N fertilizer as base fertilizer was the same, plant height, stem diameter, length of major inflorescence, number of effective branch, pod number per plant, seed number per pod, and biomass yield in group with preferred N quantity were significantly higher than those in group with reduced N fertilizer. Rapeseed yield and profits in group with preferred N quantity were signifi- cantly higher than those in group with reduced N fertilizer in field with moderate fertili- ty. In fields with higher fertility, however, the two factors were just a little higher. In group with reduced N fertilizer, use efficiency of N fertilizer, N uptake efficiency, par- tial factor productivity and harvest index of N were all significantly higher than those in group with preferred N fertilizer. Agronomic nitrogen use efficiency in group with preferred N fertilizer was significantly higher than that in group with reduced N fertiliz- er in field with moderate fertility and was significantly lower in field with high yield. With amounts of N, P and K fertilizers fixed, economic characters, yield constitution, yield, profits and N absorption in group, where 60% of N fertilizers were applied as base fertilizer, were significantly higher than those in groups with 80% or 100% of base fertilizer (N fertilizers). These indicated that rational fertilization would maintain rapeseed yield high and reduce N input to improve use efficiency of N fertilizer. On the other hand, it is effective to improve rapeseed yield.'to reduce N fertilizer to 150 kg/hm2, and application of 60%. of N fertilizers as base fertilizer is still proved optimal at present. [Conclusion] The research provides.theoretioal and technical references for improvement of yield of rapeseed and efficiency of N fertilizer.
基金Bangladesh Agricultural Research Council(BARC),Bangladesh and the Taif University Researchers Supporting Project No.(TURSP-2020/85),Taif University,Taif,Saudi Arabia.
文摘In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N management on the productivity of irrigated rice cultivars.In the context,a field observation was done at the research farm of Bangladesh Agricultural University,Mymensingh,during dry seasons in consecutive two years(2018–2019 and 2019–2020).The experiments were set up following split-plot design assigning water management in the main plots,nitrogen management in the sub-plots,and the cultivars were approved in the split-split plot with three replications.After two years observation,it was revealed that rice cultivar Binadhan-8 gave the maximum value of leaf area index,number effective tillers hill-1 and grains panicle-1 which lead to the higher grain yield(GY).Substantial relationships were observed among the concentration of N,growth,total dry matter(TDM)and N content,N uptake,N utilization effectiveness,and GY.However,with little exception,the Combined effect of water and N,cultivars and water management were varied significantly for all parameters.Finally,the results of the current study concluded that application of irrigation at 8 days after the disappearance of ponded water and source of 105 kg N ha-1 from PU+Poultry manure are the best management approach for the excellent performance of rice cultivar Binadhan-8.
基金funded by the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (131025)the Natural Science Foundation of Shaanxi Province (2014KJXX-52)
文摘Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil organic carbon(SOC) and soil N in abandoned, wheat(Triticum aestivum L.) non-fertilized, wheat fertilized(mineral fertilizer and organic manure) and alfalfa(Medicago Sativa L.) non-fertilized treatments in a semi-arid region of the Loess Plateau, China. Our results showed that SOC and soil total N contents in the 0–20 cm soil layer increased by 4.29(24.4%) and 1.39 Mg/hm2(100%), respectively, after the conversion of farmland to alfalfa land. Compared to the wheat non-fertilized treatment, SOC and soil total N contents in the 0–20 cm soil layer increased by 4.64(26.4%) and 1.18 Mg/hm2(85.5%), respectively, in the wheat fertilized treatment. In addition, we found that the extents of changes in SOC, soil total N and mineral N depended on soil depth were greater in the upper soil layer(0–30 cm) than in the deeper soil layer(30–100 cm) in the alfalfa land or fertilizer-applied wheat land. Fertilizer applied to winter wheat could increase the accumulation rates of SOC and soil total N. SOC concentration had a significant positive correlation with soil total N concentration. Therefore, this study suggested that farmland management, e.g. the conversion of farmland to alfalfa forage land and fertilizer application, could promote the sequestrations of C and N in soils in semi-arid regions.
基金supported by the National Key R&D Program of China(No.2022YFD1700605)the National Natural Science Foundation of China(Nos.31872177 and31972511)the Fundamental Research Funds for Central Non-profit Scientific Institution,China(No.1610132-023005)。
文摘The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil,prevent environmental pollution,and move toward green agriculture.The main objectives of this study were to assess the impacts of CRU’s full application on maize production and to clarify the connection between the nutrient release pattern of CRU and maize nutrient uptake.In order to learn more about the effects of CRU application on maize yields,N uptake,mineral N (N_(min)) dynamics,N balance in soil-crop systems,and economic returns,a series of field experiments were carried out in 2018–2020 in Dalian City,Liaoning Province,China.There were 4 different treatments in the experiments:no N fertilizer input (control,CK);application of common urea at 210 kg ha^(-1)(U),the ideal fertilization management level for the study site;application of polyurethane-coated urea at the same N input rate as U (PCU);and application of PCU at a 20% reduction in N input rate (0.8PCU).Our findings showed that using CRU (i.e.,PCU and 0.8 PCU) may considerably increase maize N absorption,maintain maize yields,and increase N use efficiency (NUE) compared to U.The grain yield showed considerable positive correlations with total N uptake in leaf in U and 0.8 PCU,but negative correlations with that in PCU,indicating that PCU caused excessive maize absorption while 0.8 PCU could achieve a better yield response to N supply.Besides,PCU was able to maintain N fertilizer in the soil profile 0–20 cm away from the fertilization point,and higher N_(min)content was observed in the 0–20 cm soil layer at various growth stages,particularly at the middle and late growing stages,optimizing the temporal and spatial distributions of N_(min).Additionally,compared to that in U,the apparent N loss rate in PCU was reduced by 36.2%,and applying CRU (PCU and 0.8 PCU) increased net profit by 8.5% to 15.2% with less labor and fertilization frequency.It was concluded that using CRU could be an effective N fertilizer management strategy to sustain maize production,improve NUE,and increase economic returns while minimizing environmental risks.
基金supported by the Major Agricultural Science and Technology Project of China(No.NK202218080315)the Project of Shandong Province Peanut Industry Technology System,China(No.SDAIT-04-06)。
文摘Combining nitrification inhibitor and urea can improve crop yield and nitrogen(N)use efficiency(NUE).However,the inhibitor easily gets inactivated in soil,making it difficult to achieve the desired effect.To develop a synergistic urea for increasing the inhibitor action time,soil N supply,and wheat growth,dicyandiamide(DCD)was coated after granulation with epoxy resin and then mixed with urea to develop new resin-coated DCD(RCD)synergistic urea.Scanning electron microscopy(SEM)and hydrostatic release tests were used to evaluate the membrane microstructure and the controlled-release performance of RCD.Five fertilization treatments were set up in the field:zero-N control(CK),urea(U),urea+common DCD particles(SUD1),urea+RCD(SUD2),and urea+both common DCD particles and RCD(3:7,weight/weight)(SUD3)to investigate the effects of the DCD synergistic urea on wheat growth,yield,and NUE and soil available N content.The SEM results showed that RCD had a complete coating,smooth surface,and small and rugged channels for DCD release in the profile.The hydrostatic release test at 25?C showed that the release period of DCD was extended to ten days due to resin coating.In the three DCD synergistic urea treatments,only SUD3 resulted in a significant increase in wheat yield(18.47%)compared with U.The NUE in SUD3 was significantly higher than those in SUD2,U,and SUD1.The treatment SUD3 had higher soil available N content than the other treatments during the key wheat growth stages,while effectively reducing the risk of soil nitrate leaching during wheat maturity.In summary,SUD3,a mixture of urea,DCD particles,and RCD,was the best treatment for significantly increasing wheat growth,yield,and NUE and soil N supply.
基金Supported by the National Natural Science Foundation of China-Japan Science and Technology Agency (NSFC-JST)Major International Joint Research Project (No. 30821140542)+1 种基金the National Basic Research Program (973 Program) of China (No. 2007CB109303)the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2008ZX07101-005)
文摘High rates of fertilizer nitrogen (N) are applied in greenhouse vegetable fields in southeastern China to maximize production;however,the N budgets of such intensive vegetable production remain to be explored.The goal of this study was to determine the annual N balance and loss in a greenhouse vegetable system of annual rotation of tomato,cucumber,and celery at five N (urea) application rates (0,348,522,696,and 870 kg N ha-1 year-1).Total N input to the 0-50 cm soil layer ranged from 531 to 1 053 kg ha-1,and N fertilizer was the main N source,accounting for 66%-83% of the total annual N input.In comparison,irrigation water,wet deposition,and seeds in total accounted for less than 1% of the total N input.The fertilizer N use efficiency was only 18% under the conventional application rate of 870 kg N ha-1 and decreased as the application rate increased from 522 to 870 kg N ha-1.Apparent N losses were 196-201 kg N ha-1,of which 71%-86% was lost by leaching at the application rates of 522-870 kg N ha-1.Thus,leaching was the primary N loss pathway at high N application rates and the amount of N leached was proportional to the N applied during the cucumber season.Moreover,dissolved organic N accounted for 10% of the leached N,whereas NH3 volatilization only contributed 0.1%-0.6% of the apparent N losses under the five N application rates in this greenhouse vegetable system.