期刊文献+
共找到855篇文章
< 1 2 43 >
每页显示 20 50 100
Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors
1
作者 Dehui Yang Wentao Guo +6 位作者 Fei Guo Jiaming Zhu Gang Wang Hui Wang Guanghui Yuan Shenghua Ma Beibei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期652-664,I0014,共14页
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev... Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices. 展开更多
关键词 MoSeTe n f co-doped honeycomb carbon skeleton Sodium-ion batteries Sodium-ion hybrid capacitor
下载PDF
Electronic Structure Magnetic Properties and Optical Properties of Co-doped AIN from First Principles 被引量:2
2
作者 赵龙 芦鹏飞 +5 位作者 俞重远 郭晓涛 叶寒 袁桂芳 沈阅 刘玉敏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第5期893-900,共8页
The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional the... The electronic structure, magnetic properties, and optical properties of Co-doped AIN are investigated based upon the Perdew-Burke-Ernzerhof form of generalized gradient approximation within the density functional theory. The band gaps narrowing of AI1-x Cox N are found with the increase of Co concentrations. The analyses of the band structures and density of states show that AI1-xCoxN alloys exhibit a halfometallie character. Moreover, we have succeeded in demonstrating that Co doped AIN system in x = 0.125 is always antiferromagnetie, which is in good agreement with the experimental results. Besides, it is shown that the insertion of Co atom leads to redshift of the optical absorption edge. Finally, the optical constants of pure A1N and AI1-xCoxN alloy, such as loss function, refractive index and reflectivity, are discussed. 展开更多
关键词 electronic structure magnetic properties optical properties co-doped A1n first principles
下载PDF
Low Pressure Chemical Vapor Deposition of Nb and F Co-Doped TiO<sub>2</sub>Layer
3
作者 Satoshi Yamauchi Shouta Saiki +2 位作者 Kazuhiro Ishibashi Akie Nakagawa Sakura Hatakeyama 《Journal of Crystallization Process and Technology》 2014年第2期79-88,共10页
Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant res... Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant respectively. Resistivity beyond 100 Ωcm for undoped layer was decreased with increasing supply of the dopant and dependent on the supply ratio of O2 to TTIP and decreased to 0.2 Ωcm by the optimization. X-ray fluorescent spectroscopy showed Nb-content in the layer was decreased with the O2-supply ratio. X-ray photo-spectroscopy indicated that F substituted O-site in TiO2 by O2-supply but carbon-contamination and F missing substitution in the O-site were significantly increased by excess O2-supply. Further, it was suggested that the substituted F played an important role to reduce resistivity without significant contribution of O-vacancies. XRD spectra showed F missing substitution in the O-site degraded the crystallinity. 展开更多
关键词 LPCVD Anatase-TiO2 nB and f co-dopInG Low-Resistive TIO2
下载PDF
Improved Corrosion Behavior of Biodegradable Mg-4Zn-1Mn Alloy Modified by Sr/F co-doped CaP Micro-arc Oxidation Coatings
4
作者 Weirong LI Yanfang LI +7 位作者 Qian LI Xuan XIONG Fangfei LIU Ronghui LI Heng LI Dong PANG Jia LU Xuan ZHANG 《Research and Application of Materials Science》 2023年第2期1-8,共8页
The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristi... The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate. 展开更多
关键词 Biodegradable Mg alloys Mg-4Zn-1Mn alloy Micro-arc oxidation Sr/f co-doped CaP coatings
下载PDF
Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery 被引量:5
5
作者 Hao Fan Yu Wang +8 位作者 Fujie Gao Longqi Yang Meng Liu Xiao Du Peng Wang Lijun Yang Qiang Wu Xizhang Wang Zheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期64-71,共8页
Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hier... Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hierarchical sulfur and nitrogen co-doped carbon nanocages(hSNCNC) as a promising bifunctional oxygen electrocatalyst by an in-situ MgO template method with pyridine and thiophene as the mixed precursor. The as-prepared h SNCNC exhibits a positive half-wave potential of 0.792 V(vs. reversible hydrogen electrode, RHE) for ORR, and a low operating potential of 1.640 V at a 10 mA cm-2 current density for OER. The reversible oxygen electrode index is 0.847 V, far superior to commercial Pt/C and IrO2,which reaches the top level of the reported bifunctional catalysts. Consequently, the hSNCNC as air cathodes in an assembled Zn-air battery features low charge/discharge overpotential and long lifetime. The remarkable properties arises from the introduced multiple heteroatom dopants and stable 3D hierarchical structure with multi-scale pores, which provides the abundant uniform high-active S and N species and efficient charge transfer as well as mass transportation. These results demonstrate the potential strategy in developing suitable carbon-based bi-/multi-functional catalysts to enable the next generation of the rechargeable metal-air batteries. 展开更多
关键词 3D HIERARCHICAL CARBOn nAnOCAGES S n co-dopInG BIfUnCTIOnAL electrocatalysis Zn-air battery
下载PDF
Ultralong nitrogen/sulfur Co-doped carbon nano-hollowsphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis 被引量:6
6
作者 Wei Zhang Xingmei Guo +6 位作者 Cong Li Jiang-Yan Xue Wan-Ying Xu Zheng Niu Hongwei Gu Carl Redshaw Jian-Ping Lang 《Carbon Energy》 SCIE CSCD 2023年第8期15-30,共16页
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea... The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices. 展开更多
关键词 Co nanoparticles n S co-doping oxygen electrocatalysts rechargeable Zn-air batteries ultralong carbon nano-hollow-sphere chains
下载PDF
Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance 被引量:4
7
作者 Kai Li Mengxia Ji +3 位作者 Rong Chen Qi Jiang Jiexiang Xia Huaming Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第8期1230-1239,共10页
Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples w... Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed. 展开更多
关键词 Bi5O7I n P co-doped graphene quantum dots PHOTOCATALYSIS Ionic liquid Charge separation
下载PDF
Construction of N,O co-doped carbon anchored with Co nanoparticles as efficient catalyst for furfural hydrodeoxygenation in ethanol 被引量:2
8
作者 Hui Yang Hao Chen +7 位作者 Wenhua Zhou Haoan Fan Chao Chen Yixuan Sun Jiaji Zhang Sifan Wang Teng Guo Jie Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期195-202,I0006,共9页
Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O c... Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship. 展开更多
关键词 n O co-doped carbon Electronic properties fURfURAL 2-METHYLfURAn In-situ hydrodeoxygenation
下载PDF
Microbial synthesis of N, P co-doped carbon supported PtCu catalysts for oxygen reduction reaction
9
作者 Shaohui Zhang Suying Liu +6 位作者 Jingwen Huang Haikun Zhou Xuanzhi Liu Pengfei Tan Haoyun Chen Yili Liang Jun Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期486-495,共10页
Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N... Developing highly efficient and stable platinum-based electrocatalyst for oxygen reduction reaction(ORR) is critical to expediting commercialization of fuel cells.Herein,several PtCu alloy nanocatalysts supported on N,P co-doped carbon(PtCu/NPC) were prepared by microbial-sorption and carbonization-reduction.Among them,PtCu/NPC-700 ℃ exhibits excellent catalytic performance for ORR with a mass activity of 0.895 A mg_(pt)^(-1)(@0.9 V) which is 8.29 folds of commercial Pt/C.Additionally,the ECSA and MA of PtCu/NPC-700℃ only decrease by 14.2% and 18.7% respectively,while Pt/C decreases by 35.2% and 52.8% after 10,000 cycles of ADT test.Moreover,the PtCu/NPC-700℃ catalyst emanates a maximum power density of 715 mW cm^(-2) and only 11.1% loss of maximum power density after 10,000 ADTs in single-cell test,indicating PtCu/NPC-700℃ also manifests higher activity and durability in actual single-cell operation than Pt/C.This research provides an easy and novel strategy for developing highly active and durable Pt-based alloy catalyst. 展开更多
关键词 Microbial synthesis n P co-doping PtCu catalyst Oxygen reduction reaction
下载PDF
Nitrogen and phosphorus co-doped activated carbon induces high density Cu^(+)active center for acetylene hydrochlorination 被引量:1
10
作者 Fei Li Xuemei Wang +3 位作者 Pengze Zhang Qinqin Wang Mingyuan Zhu Bin Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期193-199,共7页
This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)w... This work aims to solve the problems of low reaction activity of Cu-based catalysts and agglomeration of active centers in acetylene hydrochlorination.Cu-based catalysts supported by NAP co-doped activated carbon(AC)with different content(mCu-xNP/AC)were manufactured and applied in the acetylene hydrochlorination reaction.It was found that the doping of carriers N and P induced the transformation of Cu^(2+)to Cu^(+),and the catalytic activity was markedly improved.Under the optimal reaction temperature of 220℃,the gas hourly space velocity(GHSV)of C_(2)H_(2)was 90 h^(-1)and V_(HCl):V_(C_(2)H_(2))was 1.15.The initial activity of the 5%Cu-30 NP/AC catalyst reached 95.59%.Through some characterization methods showed the addition of N and P improved the dispersion of Cu in carbon,which increased the ratio of Cu^+/Cu^(2+).The measurement results confirmed that the chemisorption capacity of mCu-xNP/AC for C_(2)H_(2)decreased slightly,and the chemisorption capacity for HCl increased significantly,which was the reason for the increased activity of the catalyst.The conclusion provides a reference for the development of acetylene hydrochlorination Cu catalyst. 展开更多
关键词 Acetylene hydrochlorination Cu-based catalysts Catalytic activity Heterogeneous catalysis n and P co-doped
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
11
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 feCo alloy n S co-doped carbon DfT calculation Zn-air batteries Interfacial interaction
下载PDF
Inherent mass transfer engineering of a Co,N co-doped carbon material towards oxygen reduction reaction 被引量:1
12
作者 Yanzhi Wang Bin Wang +6 位作者 Haitao Yuan Zuozhong Liang Zhehao Huang Yuye Zhou Wei Zhang Haoquan Zheng Rui Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期391-396,共6页
Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is ... Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the shape of future energy scenario [1–10]. However, ORR is a complex four-electron transfer process and is kinetically sluggish. It is urgent to develop high-efficient electrocatalysts to solve this problem [11–15]. Up to now, precious metal-based catalysts such as Pt-based electrocatalysts have been widely studied and found to be one of the most efficient electrocatalysts for ORR. However, the high price and the small reserves limit their large-scale commercialization [10,16–23]. Therefore, in order to fulfill needs for the practical applications, it is necessary to develop low-cost electrocatalysts, also with high activity and great stability [19,24–28]. 展开更多
关键词 Co n co-doped porous carbon ELECTROCATALYSIS Oxygen reduction reaction Zn-air battery
下载PDF
Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery
13
作者 Yingqiao Jiang Yinhui Wang +7 位作者 Gang Cheng Yuehua Li Lei Dai Jing Zhu Wei Meng Jingyu Xi Ling Wang Zhangxing He 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期143-153,共11页
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim... The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB. 展开更多
关键词 graphite felt molten salt n O co-doping ultra-homogeneous etching vanadium redox flow battery
下载PDF
Double-Doped Carbon-Based Electrodes with Nitrogen and Oxygen to Boost the Areal Capacity of Zinc-Bromine Flow Batteries
14
作者 Xiaoyun Sun Deren Wang +4 位作者 Haochen Hu Xin Wei Lin Meng Zhongshan Ren Sensen Li 《Transactions of Tianjin University》 EI CAS 2024年第1期74-89,共16页
Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have em... Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have emerged as cost-eff ective and high-energy-density solutions,replacing expensive all-vanadium fl ow batteries.However,uneven Zn deposition during charging results in the formation of problematic Zn dendrites,leading to mass transport polarization and self-discharge.Stable Zn plating and stripping are essential for the successful operation of high-areal-capacity ZBFBs.In this study,we successfully synthesized nitrogen and oxygen co-doped functional carbon felt(NOCF4)electrode through the oxidative polymerization of dopamine,followed by calcination under ambient conditions.The NOCF4 electrode eff ectively facilitates effi cient“shuttle deposition”of Zn during charging,signifi cantly enhancing the areal capacity of the electrode.Remarkably,ZBFBs utilizing NOCF4 as the anode material exhibited stable cycling performance for 40 cycles(approximately 240 h)at an areal capacity of 60 mA h/cm^(2).Even at a high areal capacity of 130 mA h/cm^(2),an impressive energy effi ciency of 76.98%was achieved.These fi ndings provide a promising pathway for the development of high-areal-capacity ZBFBs for advanced energy storage systems. 展开更多
关键词 Zinc-bromine fl ow batteries n O co-doping Areal capacity Shuttle deposition Zinc dendrite
下载PDF
First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping 被引量:1
15
作者 陈灵娜 马松山 +2 位作者 欧阳芳平 肖金 徐慧 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期541-547,共7页
Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation en... Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices. 展开更多
关键词 metallic carbon nanotube B/n pairs co-doping energy gap fIRST-PRInCIPLES
下载PDF
NRSE与NRSF及其对神经元特异性基因表达的调控作用 被引量:4
16
作者 王小飞 于盼盼 陆佩华 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2005年第7期595-599,共5页
神经限制性沉默元件(NRSE)是一段长度为21 ̄23bp的保守DNA序列,存在于许多神经元特异表达基因的转录调控区中,神经限制性沉默因子(NRSF)能特异性结合到NRSEdsDNA上,并通过其N端和C端阻遏结构域分别连接共阻遏蛋白Sin3A/B和CoREST,Sin3A... 神经限制性沉默元件(NRSE)是一段长度为21 ̄23bp的保守DNA序列,存在于许多神经元特异表达基因的转录调控区中,神经限制性沉默因子(NRSF)能特异性结合到NRSEdsDNA上,并通过其N端和C端阻遏结构域分别连接共阻遏蛋白Sin3A/B和CoREST,Sin3A招募HDAC对组蛋白进行去乙酰基化修饰,CoREST则作为平台蛋白招募特异的“沉默组件”,以此维持基因沉默.最近的研究显示,NRSEdsRNA能在转录水平与NRSF蛋白直接作用,而不是作为siRNA或miRNA在转录后水平启动神经元特异性基因的表达. 展开更多
关键词 神经元 调控作用 基因表达 nRSf 特异表达基因 DnA序列 转录调控区 特异性结合 dsRnA 特异性基因 转录后水平 miRnA siRnA 阻遏蛋白 基因沉默 直接作用 转录水平 限制性 结构域 酰基化 组蛋白 f蛋白 C端 n
下载PDF
First-principles investigation on N/C co-doped CeO2
17
作者 任荣康 张明举 +3 位作者 彭健 牛猛 李健宁 郑树凯 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期384-387,共4页
The N and C doping effects on the crystal structures, electronic and optical properties of fluorite structure CeO2 have been investigated using the first-principles calculation. Co-doping these two elements results in... The N and C doping effects on the crystal structures, electronic and optical properties of fluorite structure CeO2 have been investigated using the first-principles calculation. Co-doping these two elements results in the local lattice distortion and volume expansion of CeO2. Compared with the energy hand structure of pure CeO2, some local energy levels appear in the forbidden band, which may facilitate the light absorption. Moreover, the enhanced photo-catalytic properties of CeO2 were explained through the absorption spectra and the selection rule of the band-to-band transitions. 展开更多
关键词 fIRST-PRInCIPLES n/C co-doped CeO2 photo-catalytic activity
下载PDF
Flexible Conductive Anodes Based on 3D Hierarchical Sn/NS-CNFs@rGO Network for Sodium-Ion Batteries 被引量:7
18
作者 Linqu Luo Jianjun Song +6 位作者 Longfei Song Hongchao Zhang Yicheng Bi Lei Liu Longwei Yin Fengyun Wang Guoxiu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期133-146,共14页
Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion duri... Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion during cycling.Herein,a flexible three-dimensional(3D)hierarchical conductive network electrode is designed by constructing Sn quantum dots(QDs)encapsulated in one-dimensional N,S codoped carbon nanofibers(NS-CNFs)sheathed within two-dimensional(2D)reduced graphene oxide(rGO)scrolls.In this ingenious strategy,1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation,2D rGO acts as electrical roads and“bridges”among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte.Because of the unique structural merits,the flexible 3D hierarchical conductive network was directly used as binder-and current collectorfree anode for SIBs,exhibiting ultra-long cycling life(373 mAh g?1 after 5000 cycles at 1 A g?1),and excellent high-rate capability(189 mAh g?1 at 10 A g?1).This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices. 展开更多
关键词 fLEXIBLE electrodes n S co-doped carbon nanofibers Reduced graphene oxide Sn quantum DOTS Sodium-ion batteries
下载PDF
Integration of pore structure modulation and B,N co-doping for enhanced capacitance deionization of biomass-derived carbon
19
作者 Yao Qiu Chunjie Zhang +7 位作者 Rui Zhang Zhiyuan Liu Huazeng Yang Shuai Qi Yongzhao Hou Guangwu Wen Jilei Liu Dong Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1488-1500,共13页
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ... Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode. 展开更多
关键词 Capacitive deionization Biomass-derived carbon Pore structure B n co-doping Desalination performance
下载PDF
N, F?Codoped Microporous Carbon Nanofibers as Efficient Metal?Free Electrocatalysts for ORR 被引量:4
20
作者 Tianle Gong Ruoyu Qi +2 位作者 Xundao Liu Hong Li Yongming Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期164-174,共11页
Currently, the oxygen reduction reaction(ORR) mainly depends on precious metal platinum(Pt) catalysts. However, Pt-based catalysts have several shortcomings, such as high cost, scarcity, and poor long-term stability. ... Currently, the oxygen reduction reaction(ORR) mainly depends on precious metal platinum(Pt) catalysts. However, Pt-based catalysts have several shortcomings, such as high cost, scarcity, and poor long-term stability. Therefore, development of e cient metal-free electrocatalysts to replace Pt-based electrocatalysts is important. In this study, we successfully prepared nitrogen-and fluorinecodoped microporous carbon nanofibers(N, F-MCFs) via electrospinning polyacrylonitrile/polyvinylidene fluoride/polyvinylpyrrolidone(PAN/PVDF/PVP) tricomponent polymers followed by a hydrothermal process and thermal treatment, which was achieved for the first time in the literature. The results indicated that N, F-MCFs exhibit a high catalytic activity(E_(onset): 0.94 V vs. RHE, E_(1/2): 0.81 V vs. RHE, and electron transfer number: 4.0) and considerably better stability and methanol tolerance for ORR in alkaline solutions as compared to commercial Pt/carbon(Pt/C, 20 wt%) catalysts. Furthermore, in acidic media, N, F-MCFs showed a four-electron transfer pathway for ORR. This study provides a new strategy for in situ synthesis of N, F-MCFs as highly e cient metal-free electrocatalysts for ORR in fuel cells. 展开更多
关键词 METAL-fREE catalyst Oxygen reduction reaction n f-codoped Carbon nAnOfIBER Polyvinylidene fluoride
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部