Alkali and alkaline‐earth metals from fly ash have a significant deactivation effect on catalysts used for selective catalytic reduction of NOx by NH3(NH3‐SCR).Bromides are considered effective additives to improve ...Alkali and alkaline‐earth metals from fly ash have a significant deactivation effect on catalysts used for selective catalytic reduction of NOx by NH3(NH3‐SCR).Bromides are considered effective additives to improve Hg0 oxidation on SCR catalysts.In this work,the effects of different bromides(NH4Br,NaBr,KBr,and CaBr2)on a commercial V2O5‐WO3/TiO2 catalyst were studied.NOx conversion decreased significantly over the KBr‐poisoned catalyst(denoted as L‐KBr),while that over NaBr‐and CaBr2‐poisoned catalysts(denoted as L‐NaBr and L‐CaBr,respectivity)decreased to a lesser extent compared with the fresh sample.Poor N2 selectivity was observed over L‐NaBr,L‐KBr and L‐CaBr catalysts.The decrease in the ratio of chemisorbed oxygen to total surface oxygen(Oα/(Oα+Oβ+Ow)),reducibility and surface acidity might contribute to the poor activity and N2 selectivity over L‐KBr catalyst.The increased Oαratio was conducive to the enhanced reducibility of L‐CaBr.Combined with enhanced surface acidity,this might offset the negative effect of the loss of active sites by CaBr2 covering.The overoxidation of NH3 and poor N2 selectivity in NH3 oxidation should retard the SCR activity at high temperatures over L‐CaBr catalyst.The increased basicity might contribute to increased NOx adsorption on L‐KBr and L‐CaBr catalysts.A correlation between the acid‐basic and redox properties of bromide‐poisoned catalysts and their catalytic properties is established.展开更多
Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the inductio...Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the induction time was 5 min, and the hydrate formation process finished in 1 h at 4.5 ℃ and 4.01 MPa. The hydrate formation rate constant reached the maximum of 1.84× 10^-7 molZ/(s.J) with the feed pressure of 7.30 MPa. The CO2 recovery was about 45 % in the feed pressure range from 4.30 to 7.30 MPa. Under the feed pressure of 4.30 MPa, the maximum separation factor and CO2 concentration in hydrate phase were 7.3 and 38.2 mol%, respectively. The results demonstrated that TBAB accelerated hydrate formation and enriched CO2 in hydrate phase under the gentle condition.展开更多
Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems...Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ATp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.展开更多
The simple equations for prediction of the density and viscosity of mixed electrolyte solutions were extended to the related properties of mixed ionic liquid solutions. The density and viscosity were measured for tern...The simple equations for prediction of the density and viscosity of mixed electrolyte solutions were extended to the related properties of mixed ionic liquid solutions. The density and viscosity were measured for ternary solutions [C2q]Br(N-ethylquinolinium bromide)+[C4q]Br (N-butylquinolinium bromide)+H2O, [C2q]Br+[C6q]Br(N-hexylquinolinium bromide)+H2O, and [C4q]Br+[C6q]Br+H2O and their binary subsystems [C2q]Br+H2O, [C4q]Br+H2O, and [C6q]Br+H2O at 15, 20 and 25 °C, respectively. The results were used to test the predictability of the extended equations. The comparison results show that these simple equations can be used to predict the density and viscosity of the mixed ionic liquid solutions from the properties of their binary subsystems of equal ionic strength.展开更多
Photopromoted carbonylation of 1-bromo-6-chlorohexane with CO catalyzed by CuBr2 and CdI2 has been carried out under ambient conditions. The results indicate that the carbonylation proceeds with the major product of c...Photopromoted carbonylation of 1-bromo-6-chlorohexane with CO catalyzed by CuBr2 and CdI2 has been carried out under ambient conditions. The results indicate that the carbonylation proceeds with the major product of chloroester ClCH2(CH2)5COOCH3 under catalysis of CuBr2. Furthermore, the activity of the carbonylation can be improved by addition of basic additives (NaOAc, Na3PO4 or (n-C4H9)3N). Among these additives, (n-C4H9)3N is the most efficient in terms of the yield of ClCH2(CH2)5COOCH3. However, the methoxycarbonyl substituting chlorine product of BrCH2(CH2)5COOCH3 is not obtained in the presence of CdI2. This is quite different from the carbonylation of monochloroalkane.展开更多
As a synergistic anti tumor agent, N solanesyl N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(5) was synthesized starting from vanillin and solanesol. Methylation of vanillin gave veratradehyde(1), which after couplin...As a synergistic anti tumor agent, N solanesyl N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(5) was synthesized starting from vanillin and solanesol. Methylation of vanillin gave veratradehyde(1), which after coupling with ethylenediamine was then catalytically reduced to N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(3), which was coupled with solanesol bromide (4) to give (5). The processes of synthesis of (3) and separation of (5) have been improved with total reaction yield being increased. The structures of the compounds were confirmed by IR, 1 H NMR, MS and elemental analysis.展开更多
基金supported by the National Key R&D Program of China(2016YFC0203900,2016YFC0203901)National Natural Science Foundation of China(51778619,21577173)~~
文摘Alkali and alkaline‐earth metals from fly ash have a significant deactivation effect on catalysts used for selective catalytic reduction of NOx by NH3(NH3‐SCR).Bromides are considered effective additives to improve Hg0 oxidation on SCR catalysts.In this work,the effects of different bromides(NH4Br,NaBr,KBr,and CaBr2)on a commercial V2O5‐WO3/TiO2 catalyst were studied.NOx conversion decreased significantly over the KBr‐poisoned catalyst(denoted as L‐KBr),while that over NaBr‐and CaBr2‐poisoned catalysts(denoted as L‐NaBr and L‐CaBr,respectivity)decreased to a lesser extent compared with the fresh sample.Poor N2 selectivity was observed over L‐NaBr,L‐KBr and L‐CaBr catalysts.The decrease in the ratio of chemisorbed oxygen to total surface oxygen(Oα/(Oα+Oβ+Ow)),reducibility and surface acidity might contribute to the poor activity and N2 selectivity over L‐KBr catalyst.The increased Oαratio was conducive to the enhanced reducibility of L‐CaBr.Combined with enhanced surface acidity,this might offset the negative effect of the loss of active sites by CaBr2 covering.The overoxidation of NH3 and poor N2 selectivity in NH3 oxidation should retard the SCR activity at high temperatures over L‐CaBr catalyst.The increased basicity might contribute to increased NOx adsorption on L‐KBr and L‐CaBr catalysts.A correlation between the acid‐basic and redox properties of bromide‐poisoned catalysts and their catalytic properties is established.
文摘Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the induction time was 5 min, and the hydrate formation process finished in 1 h at 4.5 ℃ and 4.01 MPa. The hydrate formation rate constant reached the maximum of 1.84× 10^-7 molZ/(s.J) with the feed pressure of 7.30 MPa. The CO2 recovery was about 45 % in the feed pressure range from 4.30 to 7.30 MPa. Under the feed pressure of 4.30 MPa, the maximum separation factor and CO2 concentration in hydrate phase were 7.3 and 38.2 mol%, respectively. The results demonstrated that TBAB accelerated hydrate formation and enriched CO2 in hydrate phase under the gentle condition.
基金supported by the the Industrial Consultancy and Sponsored Research (ICSR),Indian Institute of Technology Madras,Chennai (Project Number OEC/10 11/530/NFSC/JITE)the National Institute of Ocean Technology (NIOT),Chennai,India (Project Number OEC/10-11/105/NIOT/JITE)
文摘Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, ATp) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.
基金National Natural Science Foundation of China (20976189, 21076224 and 21036008)the Science Foundation of China University of Petroleum, Beijing (qzdx-2011-01)
文摘The simple equations for prediction of the density and viscosity of mixed electrolyte solutions were extended to the related properties of mixed ionic liquid solutions. The density and viscosity were measured for ternary solutions [C2q]Br(N-ethylquinolinium bromide)+[C4q]Br (N-butylquinolinium bromide)+H2O, [C2q]Br+[C6q]Br(N-hexylquinolinium bromide)+H2O, and [C4q]Br+[C6q]Br+H2O and their binary subsystems [C2q]Br+H2O, [C4q]Br+H2O, and [C6q]Br+H2O at 15, 20 and 25 °C, respectively. The results were used to test the predictability of the extended equations. The comparison results show that these simple equations can be used to predict the density and viscosity of the mixed ionic liquid solutions from the properties of their binary subsystems of equal ionic strength.
基金We appreciate the National Natural Science Foundations of China (No. 20372012) the Natural Science Foundations of Liaoning (No. 20032099) for the generous financial support.
文摘Photopromoted carbonylation of 1-bromo-6-chlorohexane with CO catalyzed by CuBr2 and CdI2 has been carried out under ambient conditions. The results indicate that the carbonylation proceeds with the major product of chloroester ClCH2(CH2)5COOCH3 under catalysis of CuBr2. Furthermore, the activity of the carbonylation can be improved by addition of basic additives (NaOAc, Na3PO4 or (n-C4H9)3N). Among these additives, (n-C4H9)3N is the most efficient in terms of the yield of ClCH2(CH2)5COOCH3. However, the methoxycarbonyl substituting chlorine product of BrCH2(CH2)5COOCH3 is not obtained in the presence of CdI2. This is quite different from the carbonylation of monochloroalkane.
文摘As a synergistic anti tumor agent, N solanesyl N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(5) was synthesized starting from vanillin and solanesol. Methylation of vanillin gave veratradehyde(1), which after coupling with ethylenediamine was then catalytically reduced to N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(3), which was coupled with solanesol bromide (4) to give (5). The processes of synthesis of (3) and separation of (5) have been improved with total reaction yield being increased. The structures of the compounds were confirmed by IR, 1 H NMR, MS and elemental analysis.