A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during t...A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly展开更多
A strategy for fabricating microcrystalline cellulose–Ti_(3)C_(2)T_(x)(MCC–MXene)nanocomposite films with high relative permittivity,high thermal conductivity,and excellent mechanical properties was developed.The MC...A strategy for fabricating microcrystalline cellulose–Ti_(3)C_(2)T_(x)(MCC–MXene)nanocomposite films with high relative permittivity,high thermal conductivity,and excellent mechanical properties was developed.The MCC–MXene nanocomposite film was fabricated by casting a solution containing N,N-dimethylacetamide/lithium chloride(DMAc/LiCl)-soluble MCC and DMAcdispersible MXene nanosheets,followed by humidity control drying.The MXene nanosheets greatly enhanced the permittivity of the nanocomposite films owing to interfacial polarization.Thus,the nanocomposite film with 20 wt.%MXene content achieved a desirable permittivity of 71.4 at 102 Hz(a 770%improvement against that of neat cellulose),while the dielectric loss only increased by 1.8 times(from 0.39 to 0.70).The obtained nanocomposite films with 20 wt.%and 30 wt.%MXene exhibited remarkable in-plane thermal conductivities of 8.523 and 9.668 W∙m^(−1)∙K^(−1),respectively,owing to the uniform dispersion and selfalignment of the MXene layered structure.Additionally,the uniformly dispersed MXene nanosheets in the MCC network with interfacial interaction(hydrogen bonding)and mechanical entanglement endowed the nanocomposite films with excellent mechanical properties and flexibility.Furthermore,the thermal stability,water resistance,and antibacterial properties of the nanocomposite films were effectively improved with the introduction of MXene.Moreover,using DMAc/LiCl as the solvent system not only improves the compatibility between MCC and MXene but also avoids the problem of easy oxidation of MXene in aqueous systems.With the high stability of the MCC–MXene solution and enhanced properties of the MCC–MXene films,the proposed strategy manifests great potential for fabricating natural biomass-based dielectric materials.展开更多
文摘A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT,Korea(NRF-2021R1I1A3060098,NRF-2021R1I1A3059777)supported by the Brain Korea 21 Plus Program(4199990414196)+1 种基金the Korea Institute for Advancement of Technology funded by the Ministry of Trade,Industry and Energy(P0017531)Y.Z.Y.was partially supported by the China Scholarship Council(No.201908260073).
文摘A strategy for fabricating microcrystalline cellulose–Ti_(3)C_(2)T_(x)(MCC–MXene)nanocomposite films with high relative permittivity,high thermal conductivity,and excellent mechanical properties was developed.The MCC–MXene nanocomposite film was fabricated by casting a solution containing N,N-dimethylacetamide/lithium chloride(DMAc/LiCl)-soluble MCC and DMAcdispersible MXene nanosheets,followed by humidity control drying.The MXene nanosheets greatly enhanced the permittivity of the nanocomposite films owing to interfacial polarization.Thus,the nanocomposite film with 20 wt.%MXene content achieved a desirable permittivity of 71.4 at 102 Hz(a 770%improvement against that of neat cellulose),while the dielectric loss only increased by 1.8 times(from 0.39 to 0.70).The obtained nanocomposite films with 20 wt.%and 30 wt.%MXene exhibited remarkable in-plane thermal conductivities of 8.523 and 9.668 W∙m^(−1)∙K^(−1),respectively,owing to the uniform dispersion and selfalignment of the MXene layered structure.Additionally,the uniformly dispersed MXene nanosheets in the MCC network with interfacial interaction(hydrogen bonding)and mechanical entanglement endowed the nanocomposite films with excellent mechanical properties and flexibility.Furthermore,the thermal stability,water resistance,and antibacterial properties of the nanocomposite films were effectively improved with the introduction of MXene.Moreover,using DMAc/LiCl as the solvent system not only improves the compatibility between MCC and MXene but also avoids the problem of easy oxidation of MXene in aqueous systems.With the high stability of the MCC–MXene solution and enhanced properties of the MCC–MXene films,the proposed strategy manifests great potential for fabricating natural biomass-based dielectric materials.