Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and ...Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.展开更多
The excitation function of the 58Ni(n,p)58Co reaction was measured using the well-established neutron activation technique andγ-ray spectroscopy.Neutrons in the energy range of 1.7 to 2.7 MeV were generated using the...The excitation function of the 58Ni(n,p)58Co reaction was measured using the well-established neutron activation technique andγ-ray spectroscopy.Neutrons in the energy range of 1.7 to 2.7 MeV were generated using the 7Li(p,n)reaction.The neutron flux was measured using the standard 115In(n,n’)115mIn monitor reaction.The results of the neutron spectrum averaged cross-section of 58Ni(n,p)58Co reactions were compared with existing cross-section data available in the EXFOR data library as well as with various evaluated data libraries such as ENDF/B-VIII.0,JEFF-3.3,JENDL-4.0,and CENDL-3.2.Theoretical calculations were performed using the nuclear reaction code TALYS.Various nuclear level density(NLD)models were tested,and their results were compared with the present findings.Realistic NLDs were also obtained through the spectral distribution method(SDM).The cross-section results,along with the absolute errors,were obtained by investigating the uncertainty propagation and using the covariance technique.Corrections forγ-ray true coincidence summing,low-energy background neutrons,andγ-ray self attenuation were performed.The experimental cross-section obtained in the present study is consistent with previously published experimental data,evaluated libraries,and theoretical calculations carried out using the TALYS code.展开更多
利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高...利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高CO2浓度处理在显著增加作物生物量的前提下,土壤速效磷和速效钾不但没有降低反而增加,增加幅度小麦季大于水稻季,根际大于非根际;水稻季土壤可溶性碳含量增加,且NN水平下水稻和小麦季进入土壤的可溶性碳增加,导致土壤有机磷降低幅度低于LN水平,且水稻季根际土壤大于非根际土壤,有机磷的降低是保证有效磷升高的一个重要因素,增加氮肥施用将有利于土壤有机磷的增加,对维持土壤磷的供给有积极作用,有利于作物对高CO浓度的持续响应。展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK2006710) the Hi-Tech Research and Development Program (863) of China (No:2003AA601100)
文摘Increasing levels of pollution within water bodies can cause eutrophication and an associated rapid growth in and reproduction of phytoplankton. Although most frequently occurring in bodies of water such as lakes and dams, in recent years an increasing number of river systems in China have suffered serious algal blooms. The community structure of phytoplankton may differ, however, dependent on the hydrodynamic conditions and nutrient levels within the water body. The field investigation results obtained from a stagnant river in Suzhou City and Taihu Lake, China, showed that in water with higher concentrations of nitrogen and phosphorus, Chlorophyta became the predominant species and in water with lower concentrations of nitrogen and phosphorus, Cyanobacteria became the predominant species. Growth experiments with competitive species, Microcystis aeruginosa Kutz and Scenedesmus quadricauda (Turp.), were conducted at three different nutrient levels. The biomass of algae in pure and mixed cultures was measured under conditions of different N/P ratios at oligotrophic, eutrophic and hypertrophic nutrient levels. The results indicated that the most suitable state for the growth and reproduction of M. aeruginosa and S. quadricauda were eutrophic conditions in both pure and mixed cultures. Under competition, however, the lower medium nutrient levels favoured M. aeruginosa, while the higher medium nutrient levels better suited S. quadricauda. Under similar hydrodynamic conditions, the community structure of phytoplankton in the water body was determined by the dominant species in competition for nutrients.
基金One of the authors(A.H.)sincerely acknowledges the Department of Science and Technology(DST),Government of Indiafor the INSPIRE Fellowship award(No.DST/INSPIRE Fellowship/2019/IF190924)+1 种基金partial support from the SERBwith grants No.SIR/2022/000566 and CRG/2021/000101,respectively。
文摘The excitation function of the 58Ni(n,p)58Co reaction was measured using the well-established neutron activation technique andγ-ray spectroscopy.Neutrons in the energy range of 1.7 to 2.7 MeV were generated using the 7Li(p,n)reaction.The neutron flux was measured using the standard 115In(n,n’)115mIn monitor reaction.The results of the neutron spectrum averaged cross-section of 58Ni(n,p)58Co reactions were compared with existing cross-section data available in the EXFOR data library as well as with various evaluated data libraries such as ENDF/B-VIII.0,JEFF-3.3,JENDL-4.0,and CENDL-3.2.Theoretical calculations were performed using the nuclear reaction code TALYS.Various nuclear level density(NLD)models were tested,and their results were compared with the present findings.Realistic NLDs were also obtained through the spectral distribution method(SDM).The cross-section results,along with the absolute errors,were obtained by investigating the uncertainty propagation and using the covariance technique.Corrections forγ-ray true coincidence summing,low-energy background neutrons,andγ-ray self attenuation were performed.The experimental cross-section obtained in the present study is consistent with previously published experimental data,evaluated libraries,and theoretical calculations carried out using the TALYS code.
文摘利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高CO2浓度处理在显著增加作物生物量的前提下,土壤速效磷和速效钾不但没有降低反而增加,增加幅度小麦季大于水稻季,根际大于非根际;水稻季土壤可溶性碳含量增加,且NN水平下水稻和小麦季进入土壤的可溶性碳增加,导致土壤有机磷降低幅度低于LN水平,且水稻季根际土壤大于非根际土壤,有机磷的降低是保证有效磷升高的一个重要因素,增加氮肥施用将有利于土壤有机磷的增加,对维持土壤磷的供给有积极作用,有利于作物对高CO浓度的持续响应。